Arnold problems for homework 1

1. Let (a) be the statement

$$
\begin{equation*}
\frac{|\bar{x}-x|}{|x|} \leq \mu \tag{a}
\end{equation*}
$$

and (b) be the statement

$$
\begin{equation*}
\bar{x}=x(1+\delta),|\delta| \leq \mu \tag{b}
\end{equation*}
$$

Show that for nonzero $x \in \mathbb{R}$, (a) is true if and only if (b) is true.
2. Let $x=[4.0091,0.12319,1.2341]^{T}$ and $y=[-1.1021, .35449,3.5449]^{T}$. Using 3 decimal-digit arithmetic compute $\bar{x}=\mathrm{fl}(x), \bar{y}=\mathrm{fl}(y), c=\mathrm{f}\left(\bar{x}^{T} \bar{x}\right)$ and $d=\mathrm{fl}\left(\bar{x}^{T} \bar{y}\right)$.
Now compute the actual values of $x^{T} x$ and $x^{T} y$ (to 5 or 6 significant digits) and find the relative errors

$$
\frac{\left|x^{T} x-c\right|}{\left|x^{T} x\right|}
$$

and

$$
\frac{\left|x^{T} y-d\right|}{\left|x^{T} y\right|} .
$$

Note: $s=\mathrm{fl}\left(u^{T} v\right)$ for $u, v \in \mathbb{R}^{n}$ is to be computed in the standard way (the same way as the textbook problem in this homework assignment):
$\mathrm{s}=0 ; \quad$ for $\mathrm{j}=1: \mathrm{n}, \quad s=f l\left(s+f l\left(u_{j} * v_{j}\right)\right) ; \quad$ end

