The Singular Value Decomposition

Let $A \in \mathbb{R}^{m \times n}$. Then there exist orthogonal matrices $U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$, and a diagonal matrix of singular values $\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{p}\right)$, where $p=\min (m, n)$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{p} \geq 0$, such that

$$
A=U \Sigma V^{T}
$$

So what?
Recall the two fundamental subspaces associated with any matrix (or linear transformation) A : The range of A is the subspace of \mathbb{R}^{m} defined as

$$
\operatorname{Range}(A)=\left\{y \in \mathbb{R}^{m}: y=A x, \text { for some } x \in \mathbb{R}^{n}\right\}
$$

and the nullspace of A is the subspace of \mathbb{R}^{n} defined as

$$
\text { Nullsp }(A)=\left\{x \in \mathbb{R}^{n}: A x=0\right\} .
$$

The rank of a matrix A is the dimension of the range of A, and the nullity of A is the dimension of the nullspace of A. One of the fundamental properties of an $m \times n$ matrix A is

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n .
$$

In an inner product space, this result should be seen as a corollary to another fundamental result which says that the range of A is the orthogonal complement of the nullspace of A^{T} :

$$
\operatorname{Range}(A)=\left[\operatorname{Nullsp}\left(A^{T}\right)\right]^{\perp} .
$$

Applying this result to A^{T} gives

$$
\operatorname{Range}\left(A^{T}\right)=[\operatorname{Nullsp}(A)]^{\perp}
$$

Back to the SVD: If $r=\operatorname{rank}(A)$, then $\sigma_{r}>0$ and $\sigma_{r+1}=0$. If we write $U=\left[U_{1}, U_{2}\right]$, and $V=\left[V_{1}, V_{2}\right]$, where $U_{1} \in \mathbb{R}^{m \times r}$ and $V_{1} \in \mathbb{R}^{n \times r}$, then (the columns of) U_{1} form an orthonormal basis (O.B.) for Range $(A), U_{2}$ an O.B. for $\operatorname{Nullsp}\left(A^{T}\right)$, V_{1} an O.B. for Range $\left(A^{T}\right)$, and V_{2} an O.B. for $\operatorname{Nullsp}(A)$.

It's all there in the SVD. And more. A matrix of rank s which best approximates A in the 2 -norm is

$$
A_{s} \equiv \sum_{j=1}^{s} \sigma_{j} u_{j} v_{j}^{T} .
$$

This implies that the singular values tell us about how close A is to matrices of a given rank (e.g. "how close to singular is this square matrix?"), and helps us to quantify the uncertainties in our data.

