The Singular Value Decomposition

Let A € R™". Then there exist orthogonal matrices U € R™™, V € R™", and a
diagonal matrix of singular values ¥ = diag(oy, 09, ..., 0,), where p = min (m, n)
and 01 > 0y > ---0, > 0, such that

A=UxVT,
So what?

Recall the two fundamental subspaces associated with any matrix (or linear
transformation) A: The range of A is the subspace of R™ defined as

Range(A) = {y € R™ : y = Az, for some x € R"},
and the nullspace of A is the subspace of R" defined as
Nullsp(A) = {x € R" : Az = 0}.

The rank of a matrix A is the dimension of the range of A, and the nullity of A is
the dimension of the nullspace of A. One of the fundamental properties of an m xn
matrix A is

rank(A) + nullity(A) = n.

In an inner product space, this result should be seen as a corollary to another
fundamental result which says that the range of A is the orthogonal complement of
the nullspace of AT:

Range(A) = [Nullsp(AT)]*.

Applying this result to AT gives
Range(A”) = [Nullsp(A)]*.
Back to the SVD: If » = rank(A), then o, > 0 and 0,1 = 0. If we write
U = [U,Us], and V = [V, V5], where U; € R™*" and V; € R™™", then (the columns

of) U, form an orthonormal basis (O.B.) for Range(A), Uy an O.B. for Nullsp(A7T),
Vi an O.B. for Range(A”), and V; an O.B. for Nullsp(A).

It’s all there in the SVD. And more. A matrix of rank s which best approximates A
in the 2-norm is .
A, = Z ajujva.
j=1

This implies that the singular values tell us about how close A is to matrices of a
given rank (e.g. “how close to singular is this square matrix?”), and helps us to
quantify the uncertainties in our data.



