Floating Point Numbers

Most numbers cannot be represented in a computer. Those that are not representable are approximated by a relatively small few that are. We will let the floating point approximation of x be called the float of x and write it as $\mathrm{fl}(x)$. A floating point number represents all of the reals in an interval near it. We can bound the length of this interval, and therefore the error that is made when approximating a number by its float. We assume that (normalized) floating point numbers have the form

$$
\bar{x}= \pm\left(0 . b_{1} b_{2} \ldots b_{t}\right)_{2} \times 2^{e}, \quad \text { where } \quad e_{n} \leq e \leq e_{p} \text { and } b_{k} \text { is } 0 \text { or } 1, \text { but } b_{1}=1 .
$$

Think of it as a (base-2) fraction times 2^{e}. Numbers too |large| for this representation are said to overflow, and numbers too |small| are said to underflow. The set of real numbers which do not underflow or overflow is called the floating point range (FPR).

Since we have allotted t bits for the fractional part, the distance between \bar{x} and its |larger| neighboring float is 2^{e-t}. Dividing this by \bar{x} gives an upper bound on the relative distance between any two floats, the machine epsilon: $\epsilon_{\text {mach }}=2^{1-t}$. We define the unit round-off, $\boldsymbol{\mu}$, to be half of this quantity: For a (binary) floating point system with a t bit fractional part, the unit round-off is $\boldsymbol{\mu}=2^{-t}$ (with base β, $\left.\boldsymbol{\mu}=\frac{1}{2} \beta^{1-t}\right)$.

The Floating Point Representation Theorem.

Suppose x is a real number in the floating point range (x doesn't underflow or overflow). Then

$$
\mathrm{fl}(x)=x(1+\epsilon), \quad \text { where } \quad|\epsilon| \leq \boldsymbol{\mu}
$$

This is a statement about relative error, and can equivalently be written as

$$
\frac{|x-\mathrm{fl}(x)|}{|x|} \leq \boldsymbol{\mu} .
$$

Unfortunately, the set of floats is not closed under arithmetic operations. For example, when we add two floats, the result is not necessarily a float, but will instead be rounded to its float. Computers today follow an industry standard called the IEEE 754, which among many other things guarantees the following:

The Fundamental Axiom of Floating Point Arithmetic.

Let x op y be some arithmetic operation. That is, op is one of,,$+- \times$ or \div Suppose x and y are (normalized) floats and that x op y is in the floating point range. Then

$$
\mathrm{fl}(x \text { op } y)=(x \text { op } y)(1+\epsilon), \text { where }|\epsilon| \leq \boldsymbol{\mu}
$$

The geometry is simple: When doing a single arithmetic operation with floats, we get the float which is closest to the true value (as long as it is in FPR). But be careful: this is a statement about floats; other numbers need to be rounded to floats before we can do any arithmetic!

