Conditioning and Stability

A problem is well conditioned if a small change in the input creates a small change in the output (solution).

A computation is backward stable if it produces the exact solution to a nearby problem.
We say that a method is backward stable for a set of problems if it is backward stable for each problem in the set.

If the problem we are trying to solve has a unique solution, then we can formulate it as "evaluate $f(x)$ ", where x represents the input and $f(x)$ represents the solution (output). Let's represent our input space by \mathcal{D} and our output space by \mathcal{R}. Then our computed result can be represented by $\bar{f}: \mathcal{D} \longrightarrow \mathcal{R}$, where the exact result is represented by $f: \mathcal{D} \longrightarrow \mathcal{R}$. That is, $\bar{f}(x)$ is our computed approximation to $f(x)$.

A problem is well conditioned in \mathcal{D} if for all small δ with $x+\delta \in \mathcal{D}, f(x+\delta)$ is close to $f(x)$.
A method is backward stable if for all $\bar{f}(x) \in \mathcal{R}$, there exists a small ϵ with $x+\epsilon \in \mathcal{D}$ and such that $\bar{f}(x)=f(x+\epsilon)$.

Note that conditioning has nothing to do with methods and that stability has nothing to do with problems. This decomposition of our computation into the independent ideas of stability-of-the-method and conditioning-of-the-problem is fundamental to modern scientific computation.

Now suppose we use a backward stable method to solve a well conditioned problem. Then since the method is backward stable there is a small ϵ such that $\bar{f}(x)=f(x+\epsilon)$, and since the problem is well conditioned $f(x+\epsilon)$ is close to $f(x)$. Thus, $\bar{f}(x)$ (the computed solution) is close to $f(x)$ (the exact solution).

Plainly spoken: a backward stable method applied to a well conditioned problem gives an accurate solution.

Here we have used the words small and close to give us the freedom to consider either absolute or relative errors and to blurr the lines between good/bad and easy/hard according to our application.

As an example, consider the addition of 2 real numbers. Here we will say $f(x, y)=x+y$ using the method $\bar{f}(x, y)=\mathrm{fl}(\mathrm{fl}(x)+\mathrm{fl}(y))$. A backward rounding error analysis shows that

$$
\begin{aligned}
\bar{f}(x, y) & =\left(x\left(1+\delta_{x}\right)+y\left(1+\delta_{y}\right)\right)\left(1+\delta_{+}\right) \\
& =x\left(1+\epsilon_{x}\right)+y\left(1+\epsilon_{y}\right) \\
& =f\left(x\left(1+\epsilon_{x}\right), y\left(1+\epsilon_{y}\right)\right), \text { where }\left|\epsilon_{x}\right|,\left|\epsilon_{y}\right| \leq 2 \mu+O\left(\mu^{2}\right)
\end{aligned}
$$

Thus, the addition of two real numbers is backward stable (in a relative sense, at least).
On the other hand, if $|x+y|$ is small, then we know that small changes in x and/or y can lead to big relative changes in $x+y$. This means the addition of two real numbers can be illconditioned (this is digit cancellation from a conditioning perspective!).

