QR Iterations

Consider the iteration

$$
\begin{aligned}
& Q_{i} R_{i} \leftarrow \\
& A_{i+1} \leftarrow A_{i} \\
& R_{i} Q_{i}
\end{aligned}
$$

Here we have first computed the QR factorization of A_{i}, and then reversed their product to form A_{i+1}. From $A_{i}=Q_{i} R_{i}$ we have $R_{i}=Q_{i}^{T} A_{i}$, and substituting that into $A_{i+1}=R_{i} Q_{i}$ gives

$$
A_{i+1}=Q_{i}^{T} A_{i} Q_{i}
$$

and thus the QR step is a similarity transformation!
If the eigenvalues of A are all real, then this iteration almost always converges to an upper triangular matrix T. In this limit, the eigenvalues of T (and hence A, right?) are $t_{11}, t_{22}, \ldots t_{n n}$. T is called a Schur form for A and the eigenvectors of T are Schur vectors of A. Every matrix is unitarily similar to an upper triangular matrix, and $T=Q^{*} A Q$ is called a Schur decomposition of A.

As it stands, this $Q R$ iteration requires $\mathrm{O}\left(n^{3}\right)$ flops per iteraton. We can reduce this by an order of magnitude by first reducing A to Hessenberg form $H_{0}=Q^{T} A Q$. The following iteration preserves the Hessenberg form, and if we use a Householder (or Givens) QR factorization it requires only $\mathrm{O}\left(n^{2}\right)$ flops:

$$
\begin{array}{ccc}
Q_{i} R_{i} & \leftarrow H_{i} \\
H_{i+1} & \leftarrow R_{i} Q_{i}
\end{array}
$$

Notice that if a Hessenberg matrix H has $h_{k+1, k}=0$, then the eigenproblem decouples: it is a block triangular matrix, and the eigenvalues of H are the union of the eigenvalues of the diagonal blocks (which are Hessenberg). A Hessenberg matrix for which none of the subdiagonal elements are zero is called unreduced.

Now if λ is an eigenvalue of an unreduced Hessenberg matrix H, then the QR factorization $Q R=H-\lambda I$ will have $r_{n n}=0$ (right?), and thus $H_{n e w}=R Q+\lambda I$ will have last row λe_{n}^{T}. So what? $H_{\text {new }}=Q^{T} H Q$ is a reduced Hessenberg matrix: we just decoupled λ ! Now we don't usually know λ a priori, but we can speed convergence of the QR iterations by shifting H_{i} at each step by an approximate eigenvalue:

$$
\begin{array}{ccc}
Q_{i} R_{i} & \leftarrow & H_{i}-s_{i} I \\
H_{i+1} & \leftarrow & R_{i} Q_{i}+s_{i} I
\end{array}
$$

This iteration is one of the most used methods to compute the eigenvalues and eigenvectors of symmetric (or Hermitian) matrices. In this case, H is both upper and lower Hessenberg, (called tridiagonal) and has only real eigenvalues.
Furthermore, the QR iteration in this case requires only $\mathrm{O}(n)$ flops.
For nonsymmetric matrices we still have to address complex eigenvalues and the added cost of complex arithmetic...

