Two QR Factorizations

We compare two techniques for $Q R$ factorizations of a full-rank matrix $A \in \mathbb{R}^{m \times n}$, with $m \geq n$. While there are a few other methods available for use, we will talk here about the modified Gram-Schmidt process (MGS), and the Householder QR factorization (HQR).

MGS thin QR factorization:

$$
A=Q R, \quad \text { where }
$$

$Q \in \mathbb{R}^{m \times n}$ satisfies $Q^{T} Q=I$ and $R \in \mathbb{R}^{n \times n}$ is upper triangular. The cost is $2 m n^{2}+\mathrm{O}(m n)$ flops. If A is overwritten by Q, then only $\frac{1}{2} n^{2}+\mathrm{O}(n)$ words of memory are required. If \tilde{Q} and \tilde{R} are the computed versions of Q and R, then there exists $\delta A \in \mathbb{R}^{m \times n}$ with $A+\delta A=\tilde{Q} \tilde{R}$, where $\|\delta A\|=\|A\| \mathrm{O}(\mu)$, and $\left\|\tilde{Q}^{T} \tilde{Q}-I\right\|=\kappa(A) \mathrm{O}(\mu)$.

HQR factored- Q full QR factorization:

$$
A=Q R, \quad \text { where }
$$

$Q \in \mathbb{R}^{m \times m}$ satisfies $Q^{T} Q=Q Q^{T}=I$ and $R \in \mathbb{R}^{m \times n}$ is upper triangular. We say "factored" here because HQR does not produce Q, but instead produces $u_{1}, u_{2}, \ldots, u_{n}$, where $H_{k}=H\left(u_{k}\right)$ and $Q=H_{1} H_{2} \cdots H_{s}$. The cost is $2 m n^{2}-\frac{2}{3} n^{3}+\mathrm{O}(m n)$ flops. If A is overwritten by $u_{1}, u_{2}, \ldots, u_{n}$ and the strict upper triangle of R (for example), then only $\mathrm{O}(n)$ words of memory are required. If \tilde{R} is the computed version of R and \tilde{Q} is the exactly formed Q matrix defined by the computed $u_{1}, u_{2}, \ldots, u_{n}$, then there exists $\delta A \in \mathbb{R}^{m \times n}$ with $A+\delta A=\tilde{Q} \tilde{R}$, where $\|\delta A\|=\|A\| \mathrm{O}(\mu)$.

HQR explicit-Q full QR factorization:

Let's say $Q=\left[\begin{array}{ll}Q_{1} & Q_{2}\end{array}\right]$, where $Q_{1} \in \mathbb{R}^{m \times n}$. If only Q_{1}, is needed, then the flop requirements are doubled, to $4 m n^{2}-\frac{4}{3} n^{3}$, and the memory requirements are $\frac{1}{2} m n+\mathrm{O}(n)$. If \bar{Q}_{1} is the computed version of Q_{1}, then $\left\|\bar{Q}_{1}^{T} \bar{Q}_{1}-I\right\|=\mathrm{O}(\mu)$. If all of Q is explicitly required, then the flop requirements become $4 m^{2} n-2 m n^{2}+\frac{2}{3} n^{3}$ and memory requirements become $\mathrm{O}\left(m^{2}\right)$ words. If \bar{Q} is that computed version of \tilde{Q}, then $\left\|\bar{Q}^{T} \bar{Q}-I\right\|=\mathrm{O}(\mu)$.

MGS \& HQR

both represent a orthonormal basis (O.B.) for $\operatorname{ColSp}(A)$. In exact arithmetic, each column of Q from MGS is \pm the corresponding column of Q_{1} from HQR. In other words, the thin part of the full $Q R$ is the thin $Q R$. MGS computes Q_{1} faster, but explicit HQR gives a "more orthogonal" basis. Implemented with care, both methods are backward stable for (LS).

