Projections

With the inner product $\langle x, y\rangle$, we have angles $\left(\langle x, y\rangle=\|x\|_{2}\|y\|_{2} \cos (\theta)\right.$), and can speak of orthogonality: $x \perp y \Longleftrightarrow\langle x, y\rangle=0$. Here we will consider the standard inner product for $\mathbb{R}^{n}:\langle x, y\rangle \equiv x^{T} y$, but more general inner products can be very useful in many applications and algorithm development.

If S is a subspace of \mathbb{R}^{n} (write $S \leq \mathbb{R}^{n}$), we say $x \perp S$ if x is orthogonal to every element of S. The subspace $S^{\perp} \leq \mathbb{R}^{n}$ is called the orthogonal complement of S

$$
S^{\perp} \equiv\left\{x \in \mathbb{R}^{n}: x \perp S\right\}
$$

and $\mathbb{R}^{n}=S \oplus S^{\perp}$ is a direct sum decomposition of \mathbb{R}^{n} into complementary subspaces in such a way that each $x \in \mathbb{R}^{n}$ has the unique factorization $x=u+v$, with $u \in S$ and $v \in S^{\perp}$. In this setting, u is the orthogonal projection of x onto S.

In this note, we will be looking at a transformation P, which satisfies

$$
\forall x \in \mathbb{R}^{n}, P x=u \text {, the orthogonal projection of } x \text { onto } S \text {. }
$$

If $x \in S$, then we should have $P x=x$ (right?), so P should satisfy $P^{2}=P$, with Range $(P)=S$. The requirement that $P x=u \perp v$, with $u \in S$ and $v \in S^{\perp}$, combined with $x^{T} y=y^{T} x$ forces P to be self-adjoint (in matrix language over \mathbb{R}, $P^{T}=P$). Any linear transformation P which satisfies

1. Range $(P)=S$,
2. $P^{2}=P$, and
3. $P^{T}=P$
is called an orthogonal projector onto S. If Q is another orthogonal projector onto S, then $Q x=Q(u+v)=u=P x, \forall x \in \mathbb{R}^{n}$, and hence $Q=P$ and we see that the orthogonal projector onto a subspace is unique. If we have a basis, then we should expect to be able to find a matrix representation for P; call it P. Let X have linearly independent columns spanning S. Now (scratch paper handy?)
$P X=X \Rightarrow X^{T} P X=X^{T} X$, Range $(P)=\operatorname{Span}(X) \Rightarrow P=X M$ for some $M, P=P^{T}$ $\Rightarrow X M=M^{T} X^{T}, P=P^{2} \Rightarrow P=X M M^{T} X^{T}$, giving $M M^{T}=\left(X^{T} X\right)^{-1}$ so that

$$
P=X\left(X^{T} X\right)^{-1} X^{T}
$$

$X^{T} X$ is nonsingular, so the derivation and formula are perfectly reasonable, but if the columns of V form an orthonormal basis for S, then $V^{T} V=I$, in which case

$$
P=V V^{T} .
$$

Now from $x=P x \oplus v$, we see that $v=(I-P) x$, and (check the properties) the orthogonal projector for S^{\perp} is $I-P$.

