Projections

With the inner product <z, y>, we have angles (<z,y>= ||z||2|ly||2 cos (§)), and can
speak of orthogonality: =z 1 y < <x,y>= 0. Here we will consider the standard
inner product for R™: <z,y> = z’y, but more general inner products can be very
useful in many applications and algorithm development.

If S is a subspace of R" (write S < R"), we say « L S if x is orthogonal to every
element of S. The subspace S+ < R" is called the orthogonal complement of S

St={zecR":z 1S},

and R" = S @ S+ is a direct sum decomposition of R” into complementary
subspaces in such a way that each z € R" has the unique factorization x = u + v,
with u € S and v € S*. In this setting, u is the orthogonal projection of x onto S.

In this note, we will be looking at a transformation P, which satisfies
Vr € R", Px = u, the orthogonal projection of x onto S.

If z € S, then we should have Pz = z (right?), so P should satisfy P? = P, with
Range(P) = S. The requirement that Pz = v 1 v, with u € S and v € S,
combined with 27y = y?x forces P to be self-adjoint (in matrix language over R,
PT = P). Any linear transformation P which satisfies

1. Range(P) = S,

2. P? =P, and

3. P =P
is called an orthogonal projector onto S. If () is another orthogonal projector onto
S, then Qr = Q(u+v) = u = Pz, Vo € R", and hence @) = P and we see that the
orthogonal projector onto a subspace is unique. If we have a basis, then we should

expect to be able to find a matrix representation for P; call it P. Let X have

linearly independent columns spanning S. Now (scratch paper handy?)
PX =X = XTPX = XTX, Range(P)=Span(X)= P = XM for some M, P = PT
= XM =M'XT P=P>= P=XMMTXT giving MM = (XTX)™! so that

P=X(XTX)"'x"T

X7 X is nonsingular, so the derivation and formula are perfectly reasonable, but if
the columns of V form an orthonormal basis for S, then VTV = I, in which case

P=vvT,

Now from = = Px @ v, we see that v = (I — P)x, and (check the properties) the
orthogonal projector for S+ is I — P.



