Projections

With the inner product $\langle x, y \rangle$, we have angles $(\langle x, y \rangle = ||x||_2 ||y||_2 \cos(\theta))$, and can speak of orthogonality: $x \perp y \iff \langle x, y \rangle = 0$. Here we will consider the standard inner product for \mathbb{R}^n : $\langle x, y \rangle \equiv x^T y$, but more general inner products can be very useful in many applications and algorithm development.

If S is a subspace of \mathbb{R}^n (write $S \leq \mathbb{R}^n$), we say $x \perp S$ if x is orthogonal to every element of S. The subspace $S^{\perp} \leq \mathbb{R}^n$ is called the *orthogonal complement* of S

$$S^{\perp} \equiv \{ x \in \mathbb{R}^n : x \perp S \},\$$

and $\mathbb{R}^n = S \oplus S^{\perp}$ is a direct sum decomposition of \mathbb{R}^n into complementary subspaces in such a way that each $x \in \mathbb{R}^n$ has the unique factorization x = u + v, with $u \in S$ and $v \in S^{\perp}$. In this setting, u is the *orthogonal projection* of x onto S.

In this note, we will be looking at a transformation P, which satisfies

 $\forall x \in \mathbb{R}^n$, Px = u, the orthogonal projection of x onto S.

If $x \in S$, then we should have Px = x (right?), so P should satisfy $P^2 = P$, with $\operatorname{Range}(P) = S$. The requirement that $Px = u \perp v$, with $u \in S$ and $v \in S^{\perp}$, combined with $x^Ty = y^Tx$ forces P to be self-adjoint (in matrix language over \mathbb{R} , $P^T = P$). Any linear transformation P which satisfies

- 1. Range(P) = S,
- 2. $P^2 = P$, and
- 3. $P^{T} = P$

is called an *orthogonal projector* onto S. If Q is another orthogonal projector onto S, then Qx = Q(u+v) = u = Px, $\forall x \in \mathbb{R}^n$, and hence Q = P and we see that the orthogonal projector onto a subspace is unique. If we have a basis, then we should expect to be able to find a matrix representation for P; call it P. Let X have linearly independent columns spanning S. Now (scratch paper handy?) $PX = X \Rightarrow X^T PX = X^T X$, Range $(P) = \operatorname{Span}(X) \Rightarrow P = XM$ for some M, $P = P^T \Rightarrow XM = M^T X^T$, $P = P^2 \Rightarrow P = XMM^T X^T$, giving $MM^T = (X^T X)^{-1}$ so that

$$P = X(X^T X)^{-1} X^T.$$

 X^TX is nonsingular, so the derivation and formula are perfectly reasonable, but if the columns of V form an *orthonormal basis* for S, then $V^TV = I$, in which case

$$P = VV^T$$
.

Now from $x = Px \oplus v$, we see that v = (I - P)x, and (check the properties) the orthogonal projector for S^{\perp} is I - P.