Gaussian Elimination as a Matrix Factorization

Each of the elementary row operations from Gaussian Elimination (GE) has associated with it a nonsingular matrix with the property that multiplying (on the left) by that associated matrix gives the same result as applying the row operation.

1. Row operation 1 (R1): Multiply row i by a scalar $\alpha \neq 0$.

Associated matrix: Let D be the identity matrix except for the (i, i) element, which is α. Then the matrix $D A$ is the result of R1 applied to A.
2. Row operation 2 (R2): Interchange row i and row j.

Associated matrix: Let P be the identity matrix with rows i and j interchanged. Then the matrix $P A$ is the result of R 2 applied to A.
3. Row operation 3 (R3): Multiply row j by a scalar m and add it to row i. Associated matrix: Let M be the identity but with m replacing the 0 in the (i, j) position. Then $M=I+m e_{i} e_{j}^{T}$, and the matrix $M A$ is the result of R3 applied to A. Taking $m=m_{i j}=-a_{i j} / a_{j j}$ puts a zero in the (i, j) position of $M A$.

Example Let $A=\left[\begin{array}{c}a_{1}^{T} \\ a_{2}^{T} \\ a_{3}^{T}\end{array}\right] \in \mathbb{R}^{3 \times n}$, that is, the $i^{\text {th }}$ row of A is a_{i}^{T}.
Let $\quad D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1\end{array}\right], \quad P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right], \quad$ and $\quad M=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ m & 0 & 1\end{array}\right]$.
Then $\quad D A=\left[\begin{array}{c}a_{1}^{T} \\ \alpha a_{2}^{T} \\ a_{3}^{T}\end{array}\right], \quad P A=\left[\begin{array}{c}a_{1}^{T} \\ a_{3}^{T} \\ a_{2}^{T}\end{array}\right], \quad$ and $\quad M A=\left[\begin{array}{c}a_{1}^{T} \\ a_{2}^{T} \\ a_{3}^{T}+m a_{1}^{T}\end{array}\right]$.
A nonsingular matrix can always be triangularized by GE using only operations R2 and R3, and almost always using only R3:

If $a_{11} \neq 0$, then R 3 can be used $n-1$ times to zero out all elements below the $(1,1)$ position. The new matrix, call it $A^{(1)}$, is related to A by

$$
A^{(1)}=M_{n, 1} M_{n-1,1} \cdots M_{21} A \equiv M_{1} A .
$$

M_{1} is called a Gauss Transform; take some time to digest this:

$$
M_{1}=M_{n, 1} \cdots M_{21}=\left(I+m_{n, 1} e_{n} e_{1}^{T}\right) \cdots\left(I+m_{21} e_{2} e_{1}^{T}\right)=I+m_{1} e_{1}^{T},
$$

where $m=\left(0, m_{21}, m_{31}, \ldots, m_{n, 1}\right)^{T}$. If $a_{k k}^{(k-1)} \neq 0, k=1,2, \ldots, n-1$, then we can triangularize A :

$$
A^{(k)}=M_{n, k} M_{n-1, k} \cdots M_{k+1, k} A^{(k-1)} \equiv M_{k} \cdots M_{2} M_{1} A
$$

and $A^{(n-1)}=M_{n-1} \cdots M_{2} M_{1} A \equiv U$ is upper triangular. Set $L=\left(M_{k} \cdots M_{2} M_{1}\right)^{-1}$. As a product of lower triangular matrices $\left(\left(I+m_{k} e_{k}^{T}\right)\left(I-m_{k} e_{k}^{T}\right)=I!\right), L$ is lower triangular, and we have the factorization $A=L U$.

