
Columns of I

A vector is simply an element of a vector space. In the vector space, we can add
vectors to each other and multiply vectors by scalars, and always get another vector
in that space (closure properties). If our vector space has finite dimension n, then
we can associate a vector with a sequence of n numbers called the coordinate
representation of the vector (you may have used the term n-tuple).

Enabling this is the idea of a basis: If B = {v1, v2, . . . , vn} is a basis for our space,
then any v in the space can be written (uniquely) as the linear combination
v = x1v1 + x2v2 + · · ·+ xnvn, and the coordinates of v (in the basis B) is the n-tuple
(x1, x2, . . . , xn). The coordinate vector of v (wrt B) is this sequence of n numbers
(scalars); I’ve written them in a row here, but could have written them in a column.
It isn’t a row or a column, it is just this sequence of scalars.

This was review (I hope), so now to the point: Any finite dimensional vector space
over the real numbers is essentially Rn (where n is its dimension). In numerical
linear algebra, this is where we live. For convenience, we simply decide to think of
our n-tuples as either rows or columns. We will go with columns. So in these pages,
we will often confuse a vector in x ∈ Rn with a matrix x ∈ Rn×1. We simply identify
x with its coordinate vector in Rn×1. If we want a row version of x, we would write
xT (the matrix transpose), and it lives in R1×n.

The standard ordered basis for Rn are the columns of the n× n identity matrix:
I = [e1, e2, . . . , en], where ej has a 1 in row j, and 0 elsewhere (if you prefer:
ej = [δi,j] ∈ Rn×1 (the Kronecker delta)).

Let A ∈ Rm×n. We might want to refer to the columns of A individually, as in
A = [a1, a2, . . . , an]. But A = AI = A[e1, e2, . . . , en] = [Ae1, Ae2, . . . , Aen], so the jth

column of A is simply Aej. Likewise, the jth row of A is eTj A, and the element ai,j is
just eTi Aej. Notice the double-duty of the ej notation: in aij = eTi Aej, ei is the ith

column of Im×m, while ej is the jth column of In×n.

So you can write A = [a1, a2, . . . , an], and aj is the jth column of A, or simply
denote the jth column of A as Aej.

Now convince yourself that we can also write In×n = e1e
T
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T
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Actually do it: let n = 3, write e1e
T
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T
3 as vectors, multiply the vectors,

and see the sum. Seriously, if you haven’t already, please do this.

Then for any A and B than can be multiplied, define C = AB and
cij = eTi (AB)ej = (eTi A)(Bej) gives the dot-product definition cij =

∑
aikbkj,

Cej = (AB)ej = A(Bej) gives jth col of AB as A times jth col of B,
eTi C = eTi (AB) = (eTi A)B gives ith row of AB as ith row of A times B, and
C = AIB = A(
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i B) is the ’outer-product’ product.

We will use all 4 perspectives above this semester. In fact, this is so basic and
important that you will soon feel lost if you don’t make it part of you.


