Matrix Arithmetic

If you don't remember how to add matrices, you should look it up now. Here we are going to talk about matrix products.

Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. Let's also say that the matrix A is the coordinate representation of a linear transformation $\mathcal{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, and likewise for B and $\mathcal{B}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$. Then linear transformation

$$
\mathcal{C}=\mathcal{A B}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

has as its coordinate representation the matrix $C=A B$. While it is true that a matrix is a rectangular array of numbers, it will be useful for us to remember that a matrix represents a linear function from one vector space to another: a matrix is a linear transformation. This is precisely why the natural product of two matrices isn't entrywise, like addition, but instead has the (maybe not as intuitive) form

$$
C=\left[c_{i j}\right], \text { where } c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

Let's let a_{i}^{T} be the $i^{\text {th }}$ row of A, and b_{j} be the $j^{\text {th }}$ column of B. Then $c_{i j}=a_{i}^{T} b_{j}$. If we now let c_{j} be the $j^{\text {th }}$ column of C, we can write $c_{j}=A b_{j}$. Running this backward, you see that $A B$ is a collection of matrix-vector products, each of which is a collection of vector-vector products.

The row-oriented version of this is simply $\chi_{i}^{T}=a_{i}^{T} B$, where χ_{i} is the $i^{t h}$ row of C.
Now let α_{j} be the $j^{\text {th }}$ column of A and β_{i}^{T} the $i^{\text {th }}$ row of B. Then $C=\sum_{k=1}^{n} \alpha_{k} \beta_{k}^{T}$. Here is C as a sum of rank 1 matrices (outer products: $(m \times 1) *(1 \times p)=(m \times p))$.

So we can think of a matrix product as a collection of inner products, a collection of matrix-vector products, a collection of vector-matrix products, or a sum of vector-vector products. And these perspectives all come from only partioning A and/or B into columns or rows.

We may find it useful to partition A and B as $A=\left[A_{i j}\right]_{i=1: d}^{j=1: e}$, where $A_{i j} \in \mathbb{R}^{m_{i} \times m_{j}}$ and $B=\left[B_{i j}\right]_{i=1: f}^{j=1: g}$, where $B_{j k} \in \mathbb{R}^{n_{j} \times n_{k}}$. This partioning is conformal to the product if $e=f$ and $m_{j}=n_{j}, j=1,2, \ldots, e$. In this setting all of the perspectives above for the matrix product are valid with the elements $a_{i j}$ and $b_{i j}$ replaced by the submatrices $A_{i j}$ and $B_{i j}$, and this includes replacing columns by block-columns and rows by block-rows.

If you haven't already, now is the time to write down a 2×3 matrix and a 3×4 matrix and try all of the ways above of finding the product. Then partition each and repeat with the partitioned versions. Then partition them differently and do again.

