
Least Squares with Gram-Schmidt

Recall the Modified Gram-Schmidt QR factorization:

A = QR, where

in exact arithmetic Q ∈ Rm×n satisfies QTQ = I and R ∈ Rn×n is upper triangular with
condition number κ(R) = κ(A). The cost is 2mn2 + O(mn) flops. If A is overwritten
by Q, then only 1

2
n2 + O(n) extra words of memory are required. If Q̃ and R̃ are the

computed versions of Q and R, then there exists δA ∈ Rm×n with A+ δA = Q̃R̃, where
‖δA‖ = ‖A‖O(µ), and ‖Q̃T Q̃− I‖ = κ(A)O(µ).

Now to solve the least squares problem (LS) minx ‖Ax− b‖2 we can use back
substitution to solve Rx = QT b (to see this substitute A = QR into the normal
equations: ATAx = AT b⇒ RTQTQRx = RTQT b⇒ QTQRx = QT b). Notice that
when we write Rx = QT b we are assuming QTQ = I. This is true in exact arithmetic,
but the result above says that in finite precision, the orthogonality of Q depends on
κ(A). Unfortunately, this – combined with the conditioning of R – gives a [κ(A)]2

factor in the backward error for x. Here we will show how to avoid this to get a
backward error result for MGS which is equivalent to that of the Householder QR
applied to (LS).

Let the MGS QR factorization of [A, b] be written as

[
A b

]
=

[
Q q

] [ R r
0 ρ

]
,

where qTQ = 0 (q is just qn+1). Note that A = QR and b = Qr + ρq. Then
QT b = QT (Qr + ρq) = r, and (LS) is solved by backward substitution: Rx = r. Just
for fun, show (both algebraically and geometrically) that ρ = minx ‖Ax− b‖2.

If you already had the MGS factorization A = QR before b arrived, no worries. The
partitioning above is just a nice way to package the algebra of one more MGS step:

w = b

for i=1:n,

r(i) = Q(:,i)’*w

w = w - r(i)*Q(:,i)

end

rho = norm(w); q = w/rho;

Now do you really think that this removes the κ(A) factor which came from the
orthogonality errors in Q? Why should it? I applaud you for your skepticism. The
answer lies in the (substantial) differences in behavior between MGS and CGS.
Explicitly computing QT b as rc = QT ∗ b is the CGS way, but MGS (the loop above)
adapts to the errors made in each inner product, giving an r which has, (to the extent
that it can), “accounted for” nonorthogonality in the columns of Q.


