Generalizing the Condition number to Full Rank Least Squares

We were considering the perturbed full rank LS problem

$$
\min _{x}\|(A+t E) x(t)-(b+t e)\|_{2},
$$

where t is real, and E and e are arbitrary but fixed. The normal equations

$$
\begin{equation*}
(A+t E)^{T}(A+t E) x(t)=(A+t E)^{T}(b+t e) \tag{1}
\end{equation*}
$$

were differentiated, giving

$$
\begin{equation*}
\dot{x} \equiv \dot{x}(0)=\left(A^{T} A\right)^{-1}\left[A^{T}\left(e-E x_{L S}\right)+E^{T}\left(b-A x_{L S}\right)\right] . \tag{2}
\end{equation*}
$$

Now let's fill in some details from the previous page. Use $x \equiv x(0) \equiv x_{L S}$, and take $\|\cdot\| \equiv\|\cdot\|_{2}$ throughout (so in particular (i) $\|M\|=\left\|M^{T}\right\|$, (ii) orthogonal matrices are isometries, and (iii) for all matrix actions $\|M N\| \leq\|M\|\|N\|$).

If $A=U \Sigma V^{T}$ is a singular value decomposition, then $\|A\|=\|\Sigma\|=\sigma_{1}$, (since V and U are orthogonal matrices), and

$$
\left\|\left(A^{T} A\right)^{-1} A^{T}\right\|=\left\|V\left(\Sigma^{T} \Sigma\right)^{-2} V^{T} V \Sigma U^{T}\right\|=\left\|V\left(\Sigma^{T} \Sigma\right)^{-2} \Sigma U^{t}\right\|=1 / \sigma_{n}
$$

giving the identities (you should verify)

$$
\kappa_{2}(A) \equiv \sigma_{1} / \sigma_{n}=\|A\|\left\|\left(A^{T} A\right)^{-1} A^{T}\right\|=\sqrt{\left\|\left(A^{T} A\right)^{-1}\right\|\|A\|^{2}} .
$$

The inequality we were working with (a linear Taylor approx to $\|x(t)-x\| /\|x\|$) was

$$
|t| \frac{\|\dot{x}(0)\|}{\|x\|} \leq|t|\left[\frac{\left\|\left(A^{T} A\right)^{-1} A^{T}\left(e-E x_{L S}\right)\right\|}{\|x\|}+\frac{\left\|\left(A^{T} A\right)^{-1} E^{T} r\right\|}{\|x\|}\right]+\mathrm{O}\left(t^{2}\right) .
$$

Let's break it into the 3 terms (using triangle inequality):

$$
|t| \frac{\|\dot{x}(0)\|}{\|x\|} \leq|t| \frac{\left\|\left(A^{T} A\right)^{-1} A^{T} e\right\|}{\|x\|}+|t| \frac{\left\|\left(A^{T} A\right)^{-1} A^{T} E x\right\|}{\|x\|}+|t| \frac{\left\|\left(A^{T} A\right)^{-1} E^{T} r\right\|}{\|x\|}+\mathrm{O}\left(t^{2}\right),
$$

... and massage a bit (same 3 terms, using $\|M N\| \leq\|M\|\|N\|$ and $\left\|E^{T}\right\|=\|E\|$):

$$
\begin{aligned}
\frac{\|t \dot{x}(0)\|}{\|x\|} \leq & \frac{\left\|\left(A^{T} A\right)^{-1} A^{T}\right\|\|A\|\|\|t e\|}{\|A\|\|x\|}+\frac{\left\|\left(A^{T} A\right)^{-1} A^{T}\right\|\|A\|\|t E\|\|x\|}{\|A\|\|x\|}+\frac{\left\|\left(A^{T} A\right)^{-1}\right\|\|A\|^{2}\| \| t E\| \| r \|}{\|A\|^{2}\|x\|}+\mathrm{O}\left(t^{2}\right) \\
& =\frac{\kappa(A)\|t e\|}{\|A\|\|x\|}+\frac{\kappa(A)\|t E\|}{\|A\|}+\frac{\|A\|^{2}\left\|\left(A^{T} A\right)^{-1}\right\|\|t E\|\| \| r \|}{\|A\|\|A\|\|x\|}+\mathrm{O}\left(t^{2}\right) .
\end{aligned}
$$

If θ is the angle between b and $\operatorname{ColSp}(A))$, then $s \equiv \sin \theta=\|r\| /\|b\|$. With $c \equiv \cos \theta$, $\|A x\|=c\|b\| \leq\|A\|\|x\|$ (draw your projection picture), and we return to the first page (again, same 3 terms until we rearrange on the last line):

$$
\begin{aligned}
& \frac{\|t \dot{x}(0)\|}{\|x\|} \leq \kappa(A)\left[\frac{\|t e\|}{c\|b\|}+\frac{\|t E\|}{\|A\|}\right]+\frac{\|A\|^{2}\left\|t\left(A^{T} A\right)^{-1}\right\|\|t E\|\|r\|}{\|A\| c\|b\|}+\mathrm{O}\left(t^{2}\right) . \\
& \quad=\kappa(A)\left[\frac{\|t e\|}{c\|b\|}+\frac{\|t E\|}{\|A\|}\right]+\frac{\kappa^{2}(A)\|t E\| s}{\|A\| c}+\mathrm{O}\left(t^{2}\right) . \\
& =\frac{\|t E\|}{\|A\|}\left(\kappa(A)+\tan (\theta) \kappa^{2}(A)\right)+\frac{\|t e\|}{\|b\|} \sec (\theta) \kappa(A)+\mathrm{O}\left(t^{2}\right) .
\end{aligned}
$$

