Sensitivity of Linear Least Squares

Assume that $A \in \mathbb{R}^{m \times n}$ has full column rank. We know that the problem

$$
\begin{equation*}
\min _{x}\|A x-b\|_{2} \tag{1}
\end{equation*}
$$

has a unique solution, say $x_{L S}$, which satisfies the (nonsingular) normal equations

$$
\begin{equation*}
A^{T} A x=A^{T} b . \tag{2}
\end{equation*}
$$

Here we will exploit the equivalence of (1) and (2) to investigate the sensitivity of (1). Note that how we compute $x_{L S}$ is not at issue; the normal equations give us an explicit functional relationship from which we can analyze the sensitivity of $x_{L S}$.

As with $A x=b$ we consider a perturbed problem

$$
\min _{x}\|(A+t E) x(t)-(b+t e)\|_{2},
$$

where t is a real parameter, and E and e are fixed. The normal equations here are

$$
\begin{equation*}
(A+t E)^{T}(A+t E) x(t)=(A+t E)^{T}(b+t e) . \tag{3}
\end{equation*}
$$

If t is small enough, then $A+t E$ has full column rank, $(A+t E)^{T}(A+t E)$ is s.p.d., $x(t)$ is continuously differentiable and $x(0)=x_{L S}$. From Taylor's theorem

$$
\begin{equation*}
\left\|x_{L S}-x(t)\right\|=|t|\|\dot{x}(0)\|+\mathrm{O}\left(t^{2}\right) \tag{4}
\end{equation*}
$$

so we differentiate (3) wrt t :
$(A+t E)^{T}(A+t E) \dot{x}(t)+\left[(A+t E)^{T} E+E^{T}(A+t E)\right] x(t)=(A+t E)^{T} e+E^{T}(b+t e)$ and solve for $\left.\dot{x}(t)\right|_{t=0}$:

$$
\begin{equation*}
\dot{x}(0)=\left(A^{T} A\right)^{-1}\left[A^{T}\left(e-E x_{L S}\right)+E^{T}\left(b-A x_{L S}\right)\right] . \tag{5}
\end{equation*}
$$

Taking $\|\cdot\| \equiv\|\cdot\|_{2}$ throughout gives submultiplicativity and provides the useful identities $\kappa(A)=\|A\|\left\|\left(A^{T} A\right)^{-1} A^{T}\right\|$ and $\kappa^{2}(A)=\|A\|^{2}\| \|\left(A^{T} A\right)^{-1} \|$. Now with $r \equiv b-A x_{L S}$, (4) and (5) give

$$
\begin{aligned}
|t| \frac{\|\dot{x}(0)\|}{\left\|x_{L S}\right\|} & \leq|t|\left[\frac{\left\|\left(A^{T} A\right)^{-1} A^{T}\left(e-E x_{L S}\right)\right\|}{\left\|x_{L S}\right\|}+\frac{\left\|\left(A^{T} A\right)^{-1} E^{T} r\right\|}{\left\|x_{L S}\right\|}\right]+\mathrm{O}\left(t^{2}\right) \\
& \leq \kappa(A)\left[\frac{\|t e\|}{\|A\|\left\|x_{L S}\right\|}+\frac{\|t E\|}{\|A\|}\right]+\frac{\|A\|^{2}\left\|t\left(A^{T} A\right)^{-1} E^{T} r\right\|}{\|A\|^{2}\left\|x_{L S}\right\|}+\mathrm{O}\left(t^{2}\right) .
\end{aligned}
$$

If θ is the angle between b and $\operatorname{ColSp}(A))$, then $s \equiv \sin \theta=\|r\| /\|b\|$. With $c \equiv \cos \theta$ $\left\|A x_{L S}\right\|=c\|b\| \leq\|A\|\left\|x_{L S}\right\|$, and for small t we have the (first order) bound

$$
\frac{\left\|x_{L S}-x(t)\right\|}{\left\|x_{L S}\right\|} \lesssim \frac{\|t E\|}{\|A\|}\left(\kappa(A)+\tan (\theta) \kappa^{2}(A)\right)+\frac{\|t e\|}{\|b\|}(\sec (\theta) \kappa(A))
$$

Thus, a relative condition number for (1) is arguably

$$
\kappa_{L S}(A, b) \equiv \kappa(A)+\tan (\theta) \kappa^{2}(A) .
$$

This generalizes the $A x=b$ condition number (where $r=0$), but becomes quadratic in $\kappa(A)$ as b points away from $\operatorname{ColSp}(A)$.

