
A = LDMT

If A is nonsingular and A = LU , then we can set D = diag(U) and (since D is
nonsinglar) MT ≡ D−1U is a unit upper triangular matrix and A = LDMT .

There is no inherent benefit to this factorization over LU , but it can give us a
perspective from which to develop other algorithms. The idea is not to compute
LDMT from LU , but to derive a method to compute L, D and M directly. To that
end, consider the kth column of A = LDMT :

a ≡ Aek = LDMT ek ≡ Ly. (1)

Suppose we have already know the first k− 1 columns of L and consider the blocked
treatment of the unit lower triangular system a = Ly:[

L11 0
L21 L22

] [
y1
y2

]
=

[
a1
a2

]
, (2)

where L11 is k×k and known, but the last column of L21 is something we would like
to compute. Forward substitution gives y1 as the solution to L11y1 = a1. Now we
know the first k elements of y, and (from (1))

y = DMT ek, (3)

giving eTk y = eTkDMT ek = dkke
T
kM

T ek = dkk (right?). D−1y = MT ek with MT unit
upper triangular means we can now compute the kth column of MT :
eTkM = [yT1 D

−1
1 , 0], where D1 = diag(d11, d22, . . . , dkk).

Now let’s try to find z, the kth column of L21 = [L̃21, z]. Notice from (3) that MT

upper triangular means y2 = 0, so L21y1 + L22y2 = a2 from (2) reduces to
L21y1 = a2, or (with y1 = (ỹT1 , dkk)T)

L̃21ỹ1 + zdkk = a2,

giving z = (a2 − L̃21ỹ1)/dkk.

Let’s recap: Given the first k−1 columns of L and D, we can compute the kth

column of L, D and MT as follows:

1. Solve L11y1 = a1 for y1 (forward substitution, about k2 flops).

2. Set dkk = eTk y1.

3. Compute kth row of M : mkj = eTj y1/djj, j = 1, 2, . . . , k−1 (k−1 flops).

4. Compute kth column of L: z = (a2 − L̃21ỹ1)/dkk (about 2k(n− k) flops).

Like the LU factorization, this takes about 2n3/3 flops. And like the LU
factorization, the method is not a stable general purpose method (trouble if dkk is
|small|), but can be stabilized with little extra effort.

Unlike the LU factorization, this method can take advantage of symmetry. If
A = AT , then M = L and the A = LDLT factorization can be computed in n3/3
flops, since step 4. can be skipped (it is done in step 3.).

