Don't make it complicated

Let $A \in \mathbb{R}^{m \times n}$ have columns $a_{1}, a_{2}, \ldots, a_{n}$. To solve $A x=b$ is simply to write b as a linear combination of the columns of A :

$$
\begin{equation*}
b=x_{1} a_{1}+x_{2} a_{2}+\cdots+x_{n} a_{n} . \tag{*}
\end{equation*}
$$

A solution to $A x=b$ is then the vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$.

The subspace of \mathbb{R}^{m} consisting of all linear combinations of the columns of A is a vector space called the range of A, or $\operatorname{ColSp}(A)$.

Is there a solution to $A x=b ?$ Iff $b \in \operatorname{ColSp}(A)$.

If there is a solution, is that solution unique? Iff the columns of A are linearly independent.

Is there a unique solution? Iff $b \in \operatorname{ColSp}(A)$ and the columns of A are linearly independent.

Lame analogy: Our only tool is the 'linear combination', and our only materials are the columns of A. The set of things we can make is a vector space called the column space of A, our 'catalog'. Do we need all of our materials to make everything in our catalog, or is there redundancy? If removing a material doesn't shrink our catalog, then it is redundant. If we remove all redundancy we are left with a smallest set of materials with which we can construct our entire catalog. That set of materials is both necessary and sufficient (for our catalog), and is called a basis.

Don't miss the obvious:
The column space of any matrix, say A, is a vector space. The columns of A span that vector space. $A x=b$ has a solution if and only if b is in that vector space. If the columns of A are linearly independent, then they form a basis for that vector space (the column space); in that case, $A x=b$ has at most one solution.

There are many ways to pose these ideas, but basically: consistent is about 'span' (is b in our catalog?) and unique is about 'linear independence' (no redundant materials). Basis just combines these.

