
Inner Products give Geometry

The dot product is an example of an inner product. If x and y are two real 3-vectors,
then x · y = x1y1 + x2y2 + x3y3. If we think of x and y as (column) vectors in Rn, then
x · y = xTy =

∑n
i=1 xiyi as a matrix multiplication. If x and y are (column) vectors in

Cn, then xTy is not well-behaved. We might instead use xTy or xTy. These are both
perfectly reasonable, equally well-behaved generalizations of the dot product to Cn.
Before you choose one, I should warn you that there are infinitely many perfectly
reasonable generalizations of the dot product. We call them inner products.

An inner product is a function that takes two vectors and gives a scalar and which
satisfies some properties that makes it “well-behaved”. Specifically, if V is a vector
space over the field F, then

f : V × V → F

is an inner product on (V,F) if for all x, y, z ∈ V and all α ∈ F

1. f(x, x) > 0 for all x ̸= 0,

2. f(x, y) = f(y, x), and

3. f(αx+ y, z) = αf(x, z) + f(y, z).

When f is an inner product, we usually denote f(x, y) by <x, y>. In this notation,
the dot product on Rn is x · y =<x, y>= yTx = xTy, while the standard inner product
on Cn is <x, y>= yTx = y∗x.

A vector space doesn’t need an inner product, but if it has one, it is an inner product
space, and it automatically gets some geometry: an inner product defines a length (the
natural norm for the inner product space) as

∥x∥ ≡
√
<x, x>,

and the angle, α, between vectors by

<x, y>= ∥x∥∥y∥ cos(α).

You might remember this formula as a theorem from Euclidean geometry; the
difference is that here we are defining angles through this formula. Among some
immediate consequences are the Cauchy-Schwartz inequality:

<x, y><y, x> ≤ <x, x><y, y>

the parallelogram identity:

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2),

and a geometric interpretation of nullspace, called orthogonality:

x ⊥ y ⇔ <x, y>= 0.


