Inner Products give Geometry

The dot product is an example of an inner product. If x and y are two real 3-vectors, then $x \cdot y = x_1y_1 + x_2y_2 + x_3y_3$. If we think of x and y as (column) vectors in \mathbb{R}^n , then $x \cdot y = x^Ty = \sum_{i=1}^n x_iy_i$ as a matrix multiplication. If x and y are (column) vectors in \mathbb{C}^n , then x^Ty is not well-behaved. We might instead use \overline{x}^Ty or $x^T\overline{y}$. These are both perfectly reasonable, equally well-behaved generalizations of the dot product to \mathbb{C}^n . Before you choose one, I should warn you that there are infinitely many perfectly reasonable generalizations of the dot product. We call them *inner products*.

An inner product is a function that takes two vectors and gives a scalar and which satisfies some properties that makes it "well-behaved". Specifically, if V is a vector space over the field \mathbb{F} , then

$$f: V \times V \to \mathbb{F}$$

is an inner product on (V, \mathbb{F}) if for all $x, y, z \in V$ and all $\alpha \in \mathbb{F}$

- 1. f(x,x) > 0 for all $x \neq 0$,
- 2. $f(x,y) = \overline{f(y,x)}$, and
- 3. $f(\alpha x + y, z) = \alpha f(x, z) + f(y, z)$.

When f is an inner product, we usually denote f(x,y) by $\langle x,y \rangle$. In this notation, the dot product on \mathbb{R}^n is $x \cdot y = \langle x,y \rangle = y^T x$, while the standard inner product on \mathbb{C}^n is $\langle x,y \rangle = \overline{y}^T x = y^* x$.

A vector space doesn't need an inner product, but if it has one, it is an inner product space, and it automatically gets some geometry: an inner product defines a length (the natural norm for the inner product space) as

$$||x|| \equiv \sqrt{\langle x, x \rangle},$$

and the angle, α , between vectors by

$$< x, y > = ||x|| ||y|| \cos(\alpha).$$

You might remember this formula as a theorem from Euclidean geometry; the difference is that here we are *defining* angles through this formula. Among some immediate consequences are the Cauchy-Schwartz inequality:

$$\langle x, y \rangle \langle y, x \rangle$$
 $\langle x, x \rangle \langle y, y \rangle$

the parallelogram identity:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2),$$

and a geometric interpretation of nullspace, called orthogonality:

$$x \perp y \Leftrightarrow \langle x, y \rangle = 0.$$