Example: Sensitivity of Linear Systems

Consider the vectors

$$
a_{1}=\binom{1000}{999}, \text { and } a_{2}=\binom{1001}{1000} .
$$

Let's let the matrix A have columns a_{1} and a_{2} :

$$
A=\left[\begin{array}{ll}
a_{1}, & a_{2}
\end{array}\right]=\left[\begin{array}{cc}
1000 & 1001 \\
999 & 1000
\end{array}\right]
$$

You can check that A is nonsingular. Then a_{1} and a_{2} are linearly independent, and so any $b \in \mathbb{R}^{2}$ can be written in exactly one way as a linear combination $b=x_{1} a_{1}+x_{2} a_{2}$. The coefficients x_{1} and x_{2} of this combination are the coordinates of the solution $x=\left(x_{1}, x_{2}\right)^{T}$, of the matrix equation $A x=b$.

Now let's take b to be

$$
b=\binom{2001}{1998.9}
$$

Solving $A x=b$, we find that the (exact) unique solution is

$$
x=\binom{101.1}{-99} \text {. }
$$

that is,

$$
b=101.1 a_{1}-99 a_{2}
$$

Now suppose we round b by about 1 part in 20,000:

$$
\tilde{b}=\binom{2001}{1999}
$$

This small change in b can be measured in vector norms: $\|b-\tilde{b}\| /\|b\| \approx 0.00005$. Now how much of a_{1} and a_{2} do we need to make \tilde{b} ? Well, we solve $A x=\tilde{b}$ to get

$$
\tilde{x}=\binom{1}{1},
$$

that is,

$$
\tilde{b}=1 a_{1}+1 a_{2} .
$$

A (relative) change in b of about 10^{-4} gives a change in x of over 10^{2}.
This example was designed to make a point: A is very close to a singular matrix (although $\operatorname{det}(A)$ doesn't tell us that). Singular systems either have no solution or have infinitely many solutions, depending on the rhs.

We will find find ways to measure how close a matrix is to the nearest singular matrix and when it is close to being singular we should view any 'solution' to $A x=b$ skeptically...

