The Gram-Schmidt process (GSp) takes a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of linearly independent vectors and gives a sequence $q_{1}, q_{2}, \ldots, q_{n}$ of orthonormal vectors which satisfy

$$
\begin{equation*}
\operatorname{Span}\left(q_{1}, q_{2}, \ldots, q_{k}\right)=\operatorname{Span}\left(a_{1}, a_{2}, \ldots, a_{k}\right), \quad k=1,2, \ldots, n . \tag{1}
\end{equation*}
$$

Everything about the GSp is here in (1). You can even see how it works: Suppose you have $q_{1}, q_{2}, \ldots, q_{k-1}$, and you want q_{k}. Since we want $a_{k} \in \operatorname{Span}\left(q_{1}, q_{2}, \ldots, q_{k}\right)$, we write

$$
\begin{equation*}
a_{k}=r_{k k} q_{k}+\sum_{j=1}^{k-1} r_{j k} q_{j} . \tag{2}
\end{equation*}
$$

Premultiplying by q_{j}^{T} (and noting orthogonality) gives

$$
\begin{equation*}
r_{j k}=q_{j}^{T} a_{k}, \quad j=1,2, \ldots, k-1 \tag{3}
\end{equation*}
$$

and now that the $r_{i j}$ are known we can use (2) to define

$$
\begin{equation*}
w \equiv r_{k k} q_{k}=a_{k}-\sum_{j=1}^{k-1} r_{j k} q_{j} . \tag{4}
\end{equation*}
$$

This gives the direction of q_{k}, and $r_{k k}$ is chosen (usually positive) so that q_{k} has unit length:

$$
\begin{equation*}
r_{k k}=\|w\|_{2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{k}=w / r_{k k} . \tag{6}
\end{equation*}
$$

The GSp is simply (3), (4), (5), and (6) for $k=1,2, \ldots, n$.
The geometry of the $k^{\text {th }}$ step of GSp is simple:
For each $j=1,2, \ldots, k-1,(3)$ and (4) subtracts from a_{k} its projection onto q_{j}. The resulting vector is then orthogonal to q_{j}. The final vector, w, is then orthogonal to $q_{1}, q_{2}, \ldots, q_{k-1}$. Interpret $r_{j k}$ as the (signed) length of the projection of a_{k} onto q_{j}.
Steps (5) and (6) simply normalize the new q_{k}.
Notice that the only time that something can go wrong here is if $w=0$; that is, if after subtracting the projections of a_{k} onto the previous q_{j}, we end up with nothing. But that means that a_{k} is a linear combination of the previous q_{j}, and thus that the a_{k} are linearly dependent.

If we have coordinates, let $A=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$, let $Q=\left[q_{1}, q_{2}, \ldots, q_{n}\right]$ and let R be the $n \times n$ upper triangular matrix defined by (3) and (5). Then the $m \times n$ matrix Q has orthonormal columns, and $A=Q R$. This is called a (thin) QR factorization of A. The columns of Q form an orthonormal basis for $\mathrm{ColSp}(\mathrm{A})$.

Notice also that (if the columns of A are linearly independent) the only freedom we have above is the sign of $r_{k k}$ (or its phase if it were complex). Thus, except for the sign of the $r_{k k}$ and (therefore) the sense of the q_{k}, the QR factorization is unique. We say that if A has full column rank, the QR factorization is essentially unique. While there are other ways to compute it, the GSp essentially defines the (thin) QR factorization.

