
Gaussian Elimination with Partial Pivoting

While it is true that almost all nonsingular matrices can be triangularized using
only Gauss Transforms (add multiple of one row to another), it does not make a
good general purpose numerical method. The problem is caused, as you might
suspect (?), by small pivot elements. Consider the kth step, zeroing the (i, k) entries
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If a
(k−1)
kk is small, then |mik| will be large, and two bad things will happen: (i)

information in the entries of A(k−1) gets swamped when the large vector mika
(k−1)
k

gets added to a
(k−1)
i , and (ii) that information is replaced by basically the same

value for each row: a
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i = k+1, k+2, . . . , n of A(k), moving Â(k) closer to the set of singular matrices.

So it’s time to bring back row operation R2: Before zeroing the elements in column
k, we find maxk≤j≤n |a(k−1)

jk | (the |biggest| element of the first column of Â(k−1)). If

that max occurs in row p, then we interchange rows k and p of A(k−1). This is called
partial pivoting. Now the |biggest| entry in the first row of the permuted Â(k−1) is in
its (1, 1) position, and thus all of the multipliers for this step satisfy |mik| ≤ 1.

In the language of matrix operations: Before applying the Gauss transform Mk, we
apply the permutation Pkp. The kth step of GE with partial pivoting (GEPP) is

A(k) = MkPkA
(k−1),

and after n− 1 steps

A(n−1) = Mn−1Pn−1 · · ·M2P2M1P1A ≡ U.

If A is nonsingular, this can always be done. It does not give the A = LU
factorization as before, because the permutations (row interchanges) mess up the
lower triangularity of L. In order to see what factorization we do get, we need to
interpret the matrix Mn−1Pn−1 · · ·M2P2M1P1. To that end, take j < k ≤ p and
notice that an ej Gauss transform followed by a (k, p) permutation is that
permutation followed by a different (permuted mj) ej Gauss transform:
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Now define Ni = I + nie
T
i , where ni = Pn−1 · · ·Pi+1mi.

Mn−1Pn−1 · · ·M2P2M1P1 = (Nn−1 · · ·N2N1)(Pn−1 · · ·P2P1) ≡ L−1P,

giving PA = LU . This simple change makes GE general purpose; in fact GEPP
(and then forward and backward substitution) is the most often used method for
solving Ax = b.


