## Flop

flop is an acronym for floating point operation. Counting the number of flops an algorithm requires to solve a problem allows us to compare - at least roughly - the relative speed of methods. (The term flops is also used by computer marketers to mean "floating point operations per second", and is a measure of the speed of the computer).

In older papers and textbooks flop stood for an operation like $c_{i j}=s+a_{i k} * b_{k j}$, which included a floating point multiply, a floating point add, and some indexing work. Today (since the mid 1990's) flop means one floating point operation $(+,-, *, /, \sqrt{ },>$, etc.). (The older version of flop is thus about 2 of the newer flops). One could argue that + is faster than, e.g. $\sqrt{ }$, and thus shouldn't be counted the same. This is true, and if an algorithm had a relatively large amount of $\sqrt{ }$ 's, then we would count them separately. In practice, counting flops gives only a rough way to compare algorithms, and since $\mathrm{a}>$ and a $\sqrt{ }$ each require bringing floats into registers and storing a result, this generic perspective will serve us well.

An algorithm for a problem of size $n$ has polynomial time complexity if it requires at most $p(n)$ operations to complete its task, where $p$ is some fixed polynomial. The algorithms we will study here usually have polynomial time complexity, and in the matrix contexts, $p$ is often cubic. If an algorithm has complexity $p(n)=a n^{3}+b n^{2}+c$, we will usually talk about it as $p(n)=a n^{3}+\mathrm{O}\left(n^{2}\right)$, since for large $n$ the leading term is much larger than the rest. Think of O (something) as a quantity that is small enough to be ignored but, with a nod to " $=$ ", not forgotten. More precisely,

$$
f(n)=\mathrm{O}(g(n)) \text { if } \exists k, N>0 \text { such that } n>N \Rightarrow|f(n)| \leq k|g(n)|
$$

It will be typical for us to take $g(n)=n^{s}$, for $s=1,2$, or 3 .
Aside: we have also seen this notation with small quantities (think Taylor's thm, or rounding error analysis), in that case the perspective is the same, but we have

$$
f(h)=\mathrm{O}(g(h)) \text { if } \exists k, \delta>0 \text { such that } h<\delta \Rightarrow|f(h)| \leq k|g(h)|,
$$

and here also a typical $g$ is $g(h)=h^{s}$.
As an example consider, the complexity of matrix multiplication. If $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, then $C=A B$ is an $m \times p$ matrix, and each element can be computed as a dot product $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$. Each $c_{i j}$ requires $n$ multiplies and $n-1$ adds, so the complexity for the product is $(2 n-1) m p=2 m n p+\mathrm{O}(m p)=\mathrm{O}(m n p)$ flops. Notice that the flop count is associated with the algorithm, not the problem. (The complexity of a problem is the complexity of the fastest algorithm for that problem). For example, consider the complexity of computing $A B C$ for rectangular matrices by studying the two "algorithms" $(A B) C$ and $A(B C)$.

You might find it interesting to imagine (or construct) a table comparing $n, n \log _{2}(n), n^{2}, n^{3}, 2^{n}, n$ ! for $n=8,16,64,512$.

