
Flop

flop is an acronym for floating point operation. Counting the number of flops an
algorithm requires to solve a problem allows us to compare – at least roughly – the
relative speed of methods. (The term flops is also used by computer marketers to
mean “floating point operations per second”, and is a measure of the speed of the
computer).

In older papers and textbooks flop stood for an operation like cij = s + aik ∗ bkj,
which included a floating point multiply, a floating point add, and some indexing
work. Today (since the mid 1990’s) flop means one floating point operation
(+, −, ∗, /,

√
, >, etc.). (The older version of flop is thus about 2 of the newer

flops). One could argue that + is faster than, e.g.
√

, and thus shouldn’t be counted
the same. This is true, and if an algorithm had a relatively large amount of

√
’s,

then we would count them separately. In practice, counting flops gives only a rough
way to compare algorithms, and since a > and a

√
each require bringing floats into

registers and storing a result, this generic perspective will serve us well.

An algorithm for a problem of size n has polynomial time complexity if it requires at
most p(n) operations to complete its task, where p is some fixed polynomial. The
algorithms we will study here usually have polynomial time complexity, and in the
matrix contexts, p is often cubic. If an algorithm has complexity
p(n) = an3 + bn2 + c, we will usually talk about it as p(n) = an3 + O(n2), since for
large n the leading term is much larger than the rest. Think of O(something) as a
quantity that is small enough to be ignored but, with a nod to “=”, not forgotten.
More precisely,

f(n) = O(g(n)) if ∃k,N > 0 such that n > N ⇒ |f(n)| ≤ k|g(n)|.

It will be typical for us to take g(n) = ns, for s = 1, 2, or 3.

Aside: we have also seen this notation with small quantities (think Taylor’s thm, or rounding
error analysis), in that case the perspective is the same, but we have

f(h) = O(g(h)) if ∃k, δ > 0 such that h < δ ⇒ |f(h)| ≤ k|g(h)|,

and here also a typical g is g(h) = hs.

As an example consider, the complexity of matrix multiplication. If A ∈ Rm×n and
B ∈ Rn×p, then C = AB is an m× p matrix, and each element can be computed as
a dot product cij =

∑n
k=1 aikbkj. Each cij requires n multiplies and n− 1 adds, so

the complexity for the product is (2n− 1)mp = 2mnp + O(mp) = O(mnp) flops.
Notice that the flop count is associated with the algorithm, not the problem. (The
complexity of a problem is the complexity of the fastest algorithm for that
problem). For example, consider the complexity of computing ABC for rectangular
matrices by studying the two “algorithms”(AB)C and A(BC).

You might find it interesting to imagine (or construct) a table comparing
n, n log2(n), n2, n3, 2n, n! for n = 8, 16, 64, 512.


