The Action of Householder Reflectors

Let $A \in \mathbb{R}^{m \times n}, m \geq n$. You may recall that the Householder QR factorization can be written as

$$
H_{p} \cdots H_{2} H_{1} A=R,
$$

where $p=\min (n, m-1)$ and $H_{k}=I-\left(\frac{2}{u_{k}^{T} u_{k}}\right) u_{k} u_{k}^{T}$ is a Householder reflector which introduces zeros into positions $k+1$ to m of the $k^{\text {th }}$ column of the matrix $A^{(k-1)}=H_{k-1} \cdots H_{2} H_{1} A$. This gives $A=Q R$, where we define

$$
Q=H_{1} H_{2} \cdots H_{p} .
$$

The H_{j} are not explicitly formed, since that is very inefficient, and since they are completely determined by the u vectors. The matrix Q is rarely formed, either. What we usually do is save the u_{j} 's. If we let Q_{u} be the array whose $j^{\text {th }}$ column is u_{j}, it would be called the "factored form" of Q. In Matlab, if u is our variable name for u_{j}, then we might write $Q u(:, j)=u$. In a memory efficient code, we would only save entries $j: m$ of $u_{j}\left(\tilde{u}_{j}=u_{j}(j: m)\right.$), and would use the lower triangle of A (plus an n-vector) to store $\tilde{u}_{j}, j=1, \ldots, p$.

If later we will need to find the vector $c=Q^{T} b$, then instead of explicitly forming Q, we use the routine HOUSEQACT: Notice that

$$
C=Q^{T} B=H_{p} \cdots H_{2} H_{1} B
$$

so we write HOUSEQACT to form this product

```
C = B;
for j=1:p,
    C = Hj * C; %but you code this line the right way...
end
```

Of course, it would be just as easy to write code to implement

$$
C=Q B=H_{1} H_{2} \cdots H_{p} B,
$$

and $B Q^{T}$ or $B Q$. In fact, while it is rarely needed explicitly, we could compute Q above as $Q=Q I$, or $Q=I Q, \ldots$

We discuss how to find the u_{j} 's and how to code the algorithm above efficiently for speed and memory on other pages, but a good implementation of the loop above should be all the convincing you need to understand that Householder reflectors are never explicitly computed. If $C \in \mathbb{R}^{m \times r}$, a good implementation of the pseudocode above requires $r \sum_{j=0}^{n} 4(m-j) \approx 2 m n r\left(2-\frac{n}{m}\right)$ flops, and even if we knew $Q \in \mathbb{R}^{m \times m}$ explicitly, that matrix product would require $2 m^{2} r$ flops (which is more costly than HOUSEQACT since $n \leq m$).

