Dot Product Error Analysis

Let z,y € R" have floating point entries. Here we will try to bound the rounding
errors in the computation of x7y. Since how this is computed determines the result,
we will analyze the most common algorithm:

s1 = fl(z1y1); then, for k =1,2,...,n— 1, spr1 = fA(sk + A(zpy))-
Then, by the FAFA, we have s; = x1y;(1 4 61), with |0;] < p.

The subsequent iterates are each computed with 2 rounding errors: the multiply
(FAFA: (1 + d3)) and then the add (FAFA: (1 + €3)).

So = (81 -+ l’ng(l —+ (52))(1 + 62) = SClyl(l —+ (51)(1 + 62) -+ £C2y2(1 -+ 52)(1 -+ 62).
The structure becomes clearer with s3: s3 = (s2 + x3y3(1 4 d3))(1 + €3), or

S3 = I1y1<1+51)<1+€2)(1+63) + $2y2(1+62>(1+62)(1+€3) + I3y3<1+53)(1+63)

I know this is rather ugly, but since each of the |0;], |&;| < @, we can “simplify” a bit:
s3 =191 (1 + 61 + €2 + €3) + 22ya(1 + 2 + €2 + €3) + z3y3(1 + 03 + €3) + O(p?).

Each term above has one ¢ and some €’s. The emerging pattern is
k
Sk = Z z39;(1 + (up to k rounding terms)) + O(p?).
i=1

The number of € terms goes down as i increases (the last term will only have 1).

Now we apply the triangle inequality (and |0;], |€;| < p) to the difference between
the computed and exact values:

|s, —aly| = ‘ inyi(l + (up to n rounding terms)) — inyi + O(p?)
i=1

=1

= ‘inyi(up to n rounding terms) + O(u?)
i=1

< Z|xz| ly;| n [rounding term bound| + O(u?)
i=1
< > lwllyinp + O(p?)

=1
= nplz|"ly| + O(p?)

As long as 27y # 0, we can write this result as
2"y — fi(2"y)] 2"yl

+0(p?).

2Ty |z Ty

In this form, the risk of cancellation is explicit. This little theorem (which can be
given in other forms) is the error analysis workhorse in numerical linear algebra.

