Dot Product Error Analysis

Let $x, y \in \mathbb{R}^n$ have floating point entries. Here we will try to bound the rounding errors in the computation of x^Ty . Since *how* this is computed determines the result, we will analyze the most common algorithm:

$$s_1 = \text{fl}(x_1y_1);$$
 then, for $k = 1, 2, \dots, n-1, s_{k+1} = \text{fl}(s_k + \text{fl}(x_ky_k)).$

Then, by the FAFA, we have $s_1 = x_1 y_1 (1 + \delta_1)$, with $|\delta_1| \leq \mu$.

The subsequent iterates are each computed with 2 rounding errors: the multiply (FAFA: $(1 + \delta_2)$) and then the add (FAFA: $(1 + \epsilon_2)$).

$$s_2 = (s_1 + x_2y_2(1 + \delta_2))(1 + \epsilon_2) = x_1y_1(1 + \delta_1)(1 + \epsilon_2) + x_2y_2(1 + \delta_2)(1 + \epsilon_2).$$

The structure becomes clearer with s_3 : $s_3 = (s_2 + x_3y_3(1 + \delta_3))(1 + \epsilon_3)$, or

$$s_3 = x_1 y_1 (1 + \delta_1)(1 + \epsilon_2)(1 + \epsilon_3) + x_2 y_2 (1 + \delta_2)(1 + \epsilon_2)(1 + \epsilon_3) + x_3 y_3 (1 + \delta_3)(1 + \epsilon_3).$$

I know this is rather ugly, but since each of the $|\delta_i|$, $|\epsilon_i| \leq \mu$, we can "simplify" a bit:

$$s_3 = x_1 y_1 (1 + \delta_1 + \epsilon_2 + \epsilon_3) + x_2 y_2 (1 + \delta_2 + \epsilon_2 + \epsilon_3) + x_3 y_3 (1 + \delta_3 + \epsilon_3) + O(\boldsymbol{\mu}^2).$$

Each term above has one δ and some ϵ 's. The emerging pattern is

$$s_k = \sum_{i=1}^k x_i y_i (1 + (\text{up to k rounding terms})) + O(\boldsymbol{\mu}^2).$$

The number of ϵ terms goes down as i increases (the last term will only have 1).

Now we apply the triangle inequality (and $|\delta_i|, |\epsilon_i| \leq \mu$) to the difference between the computed and exact values:

$$|s_n - x^T y| = \left| \sum_{i=1}^n x_i y_i (1 + (\text{up to } n \text{ rounding terms})) - \sum_{i=1}^n x_i y_i + O(\boldsymbol{\mu}^2) \right|$$

$$= \left| \sum_{i=1}^n x_i y_i (\text{up to } n \text{ rounding terms}) + O(\boldsymbol{\mu}^2) \right|$$

$$\leq \sum_{i=1}^n |x_i| |y_i| |n| |\text{rounding term bound}| + O(\boldsymbol{\mu}^2)$$

$$\leq \sum_{i=1}^n |x_i| |y_i| n \boldsymbol{\mu} + O(\boldsymbol{\mu}^2)$$

$$= n \boldsymbol{\mu} |x|^T |y| + O(\boldsymbol{\mu}^2)$$

As long as $x^T y \neq 0$, we can write this result as

$$\frac{|x^Ty - \mathrm{fl}(x^Ty)|}{|x^Ty|} \le \boldsymbol{\mu} n \frac{|x|^T|y|}{|x^Ty|} + \mathrm{O}(\boldsymbol{\mu}^2).$$

In this form, the risk of cancellation is explicit. This little theorem (which can be given in other forms) is the error analysis workhorse in numerical linear algebra.