Dot Product Error Analysis

Let $x, y \in \mathbb{R}^{n}$ have floating point entries. Here we will try to bound the rounding errors in the computation of $x^{T} y$. Since how this is computed determines the result, we will analyze the most common algorithm:

$$
s_{1}=\mathrm{fl}\left(x_{1} y_{1}\right) ; \quad \text { then, for } k=1,2, \ldots, n-1, s_{k+1}=\mathrm{f}\left(s_{k}+\mathrm{fl}\left(x_{k} y_{k}\right)\right)
$$

Then, by the FAFA, we have $s_{1}=x_{1} y_{1}\left(1+\delta_{1}\right)$, with $\left|\delta_{1}\right| \leq \boldsymbol{\mu}$.
The subsequent iterates are each computed with 2 rounding errors: the multiply (FAFA: $\left.\left(1+\delta_{2}\right)\right)$ and then the add (FAFA: $\left(1+\epsilon_{2}\right)$).

$$
s_{2}=\left(s_{1}+x_{2} y_{2}\left(1+\delta_{2}\right)\right)\left(1+\epsilon_{2}\right)=x_{1} y_{1}\left(1+\delta_{1}\right)\left(1+\epsilon_{2}\right)+x_{2} y_{2}\left(1+\delta_{2}\right)\left(1+\epsilon_{2}\right)
$$

The structure becomes clearer with $s_{3}: s_{3}=\left(s_{2}+x_{3} y_{3}\left(1+\delta_{3}\right)\right)\left(1+\epsilon_{3}\right)$, or

$$
s_{3}=x_{1} y_{1}\left(1+\delta_{1}\right)\left(1+\epsilon_{2}\right)\left(1+\epsilon_{3}\right)+x_{2} y_{2}\left(1+\delta_{2}\right)\left(1+\epsilon_{2}\right)\left(1+\epsilon_{3}\right)+x_{3} y_{3}\left(1+\delta_{3}\right)\left(1+\epsilon_{3}\right)
$$

I know this is rather ugly, but since each of the $\left|\delta_{i}\right|,\left|\epsilon_{i}\right| \leq \boldsymbol{\mu}$, we can "simplify" a bit:

$$
s_{3}=x_{1} y_{1}\left(1+\delta_{1}+\epsilon_{2}+\epsilon_{3}\right)+x_{2} y_{2}\left(1+\delta_{2}+\epsilon_{2}+\epsilon_{3}\right)+x_{3} y_{3}\left(1+\delta_{3}+\epsilon_{3}\right)+\mathrm{O}\left(\boldsymbol{\mu}^{2}\right)
$$

Each term above has one δ and some ϵ 's. The emerging pattern is

$$
s_{k}=\sum_{i=1}^{k} x_{i} y_{i}(1+(\text { up to } \mathrm{k} \text { rounding terms }))+\mathrm{O}\left(\boldsymbol{\mu}^{2}\right)
$$

The number of ϵ terms goes down as i increases (the last term will only have 1).
Now we apply the triangle inequality (and $\left|\delta_{i}\right|,\left|\epsilon_{i}\right| \leq \boldsymbol{\mu}$) to the difference between the computed and exact values:

$$
\begin{aligned}
\left|s_{n}-x^{T} y\right| & =\mid \sum_{i=1}^{n} x_{i} y_{i}(1+(\text { up to } n \text { rounding terms }))-\sum_{i=1}^{n} x_{i} y_{i}+\mathrm{O}\left(\boldsymbol{\mu}^{2}\right) \mid \\
& =\mid \sum_{i=1}^{n} x_{i} y_{i}(\text { up to } n \text { rounding terms })+\mathrm{O}\left(\boldsymbol{\mu}^{2}\right) \mid \\
& \leq \sum_{i=1}^{n}\left|x_{i}\right|\left|y_{i}\right| n \mid \text { rounding term bound } \mid+\mathrm{O}\left(\boldsymbol{\mu}^{2}\right) \\
& \leq \sum_{i=1}^{n}\left|x_{i}\right|\left|y_{i}\right| n \boldsymbol{\mu}+\mathrm{O}\left(\boldsymbol{\mu}^{2}\right) \\
& =n \boldsymbol{\mu}|x|^{T}|y|+\mathrm{O}\left(\boldsymbol{\mu}^{2}\right)
\end{aligned}
$$

As long as $x^{T} y \neq 0$, we can write this result as

$$
\frac{\left|x^{T} y-\mathrm{f}\left(x^{T} y\right)\right|}{\left|x^{T} y\right|} \leq \boldsymbol{\mu} n \frac{|x|^{T}|y|}{\left|x^{T} y\right|}+\mathrm{O}\left(\boldsymbol{\mu}^{2}\right)
$$

In this form, the risk of cancellation is explicit. This little theorem (which can be given in other forms) is the error analysis workhorse in numerical linear algebra.

