Coordinates

Let R be a linear space with basis $\mathcal{B}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Then if x is any vector in R, we can write $x=\sum_{i=1}^{n} c_{i} x_{i}$, and the scalars c_{i} are unique. Thus, for this basis, each $x \in R$ has associated with it a unique n-tuple $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$. This n-tuple is called the coordinate vector for x wrt \mathcal{B}, and the c_{i} are the coordinates of x wrt \mathcal{B}. A suggestive notation is $[x]_{\mathcal{B}}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{T}$.

So x is the (possibly abstract) vector, and $[x]_{\mathcal{B}}$ is the coordinate vector for x; not abstract at all, but a sequence of n scalars. If $\mathcal{B}=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$, the standard ordered basis for \mathbb{R}^{n}, then the vector $(2,-1,3)^{T}=2 e_{1}-1 e_{2}+3 e_{3}$, and its coordinates are $\left(c_{1}, c_{2}, c_{3}\right)=(2,-1,3)$ (after all, this is the standard ordered basis for \mathbb{R}^{3}). But now, if we take as our basis $\mathcal{B}=\left\{e_{1}, e_{3}, e_{2}\right\}$, then the coordinate vector of $x=(2,-1,3)^{T}$ is $[x]_{\mathcal{B}}=(2,3,-1)^{T}$.

So how do we find the coordinates for a vector x with respect to some basis \mathcal{B} ? Well, if $\mathcal{B}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, then we want to find the c_{i} in $x=\sum_{i=1}^{n} c_{i} x_{i}$. If we are in \mathbb{R}^{n}, then we can simply construct the matrix $P=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, whose $\mathrm{j}^{\text {th }}$ column is x_{j}. Then we have the nonsingular system of linear equations $P[x]_{\mathcal{B}}=x$, whose solution is $[x]_{\mathcal{B}}=P^{-1} x$. If now we want to change basis, that is, represent x in the basis $\mathcal{B}^{\prime}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, then we construct $S=\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ and solve $P[x]_{\mathcal{B}}=x=S[x]_{\mathcal{B}^{\prime}}$ to get $[x]_{\mathcal{B}^{\prime}}=S^{-1} P[x]_{\mathcal{B}}$. Notice that the $\mathrm{j}^{\text {th }}$ column of $S^{-1} P$ is $\left[x_{j}\right]_{\mathcal{B}^{\prime}} . S^{-1} P$ is called the change of basis matrix from \mathcal{B} to \mathcal{B}^{\prime}.

Let's move on to linear operators and matrices. In a finite dimensional linear space we can also give linear operators coordinates. The coordinate representation of a linear operator is a matrix. Let U and V be linear spaces with bases
$\mathcal{U}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\mathcal{V}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, respectively. Suppose $L: U \longrightarrow V$ is linear. We would like to represent L as the matrix $[L]_{\mathcal{V}, \mathcal{U}}$ in such a way that if $v=L(u)$, then $[v]_{\mathcal{V}}=[L]_{\mathcal{V}, \mathcal{U}}[u]_{\mathcal{U}}$. If we let $[v]_{\mathcal{V}}=\left[c_{i}\right],[u]_{\mathcal{U}}=\left[b_{j}\right]$, and $[L]_{\mathcal{V}, \mathcal{U}}=\left[a_{i j}\right]$, then we must have $c_{i}=\sum_{j=1}^{n} a_{i j} b_{j}, \quad i=1,2, \ldots, m$. In particular, this must hold for $u=u_{j}$ (where all $b^{\prime} s$ are zero but the $\mathrm{j}^{t h}$): $c_{i}=a_{i j} b_{j}, \quad i=1,2, \ldots, m$. So the $\mathrm{j}^{t h}$ column of $[L]_{\mathcal{V}, \mathcal{U}}$ must be the coordinates of $L\left(u_{j}\right)$ in the basis \mathcal{V}, i.e. $[L]_{\mathcal{V}, \mathcal{U}} e_{j}=\left[L\left(u_{j}\right)\right]_{\mathcal{V}}$; and this completely describes $[L]_{\mathcal{V}, \mathcal{U}}$.

Now consider the identity map from U to U, given by $\mathcal{I}(u)=u$. The matrix for I in the basis \mathcal{U} has as its $\mathrm{j}^{\text {th }}$ column $\left[u_{j}\right]_{\mathcal{U}}$, so $[\mathcal{I}]_{\mathcal{U}, \mathcal{U}}=I$, the identity matrix. What about $[\mathcal{I}]_{\mathcal{V}, \mathcal{U}}$? Well, the $\mathrm{j}^{\text {th }}$ column of $[\mathcal{I}]_{\mathcal{V}, \mathcal{U}}$ is $\left[u_{j}\right]_{\mathcal{V}}$, which is precisely the change of basis matrix $S^{-1} P$ that we found above! Also, $[\mathcal{I}]_{\mathcal{V}, \mathcal{U}}[I]_{\mathcal{U}, \mathcal{V}}=[\mathcal{I}]_{\mathcal{V}, \mathcal{V}}=I$, so the change of basis matrix from \mathcal{U} to \mathcal{V} is the inverse of the change of basis matrix from \mathcal{V} to \mathcal{U}, and similarity is simply $[L]_{\mathcal{U}, \mathcal{U}}=[\mathcal{I}]_{\mathcal{U}, \mathcal{V}}[L]_{\mathcal{V}, \mathcal{V}}[\mathcal{I}]_{\mathcal{V}, \mathcal{U}}$.

