Classical Gram-—Schmidt vs Modified Gram—Schmidt

Let A € R™", with m > n, and let A have n linearly independent columns

ai,as,...,a,. There are many ways to implement the Gram—Schmidt process. Here
are two very different implementations:
Classical Modified
for k=1:n, for k=1:n,
w = Qg w = ag
for j = 1:k-1, for j=1:k-1,
ik = q; W
end ik = quw
for j = 1:k-1, W =W — Tjiq;
W =W — TRy
end end
ek = [lw|2 ek = [[w]2
Q. = W/ Tk Q. = w/Txx
end end

Please study the pseudocode above carefully. In exact arithmetic, these two
methods generate exactly the same output (exercise: convince yourself of this). The
algorithm genotypes are very similar (MGS is CGS with a few “pieces of DNA”
removed). In exact arithmetic the phenotypes are identical, while in the presence of
rounding errors the phenotypes are dramatically different.

In classical Gram-Schmidt (CGS) we compute the (signed) lengths of the
orthogonal projections of w = a; onto q1,¢qs, ..., q._1, and then subtract those
projections (with the rounding errors) from w. If Qx_1 = [q1, ¢2, - - ., qx—1], then the
orthogonal projector onto ColSp(Qy_1) is P = Qk_1(QF ,Qr_1)"'QF_,. If Q)1 has
orthonormal columns, then P = Q;_1Q7F_,:

w= (I — Qk—1Q£_1>ak-

But because of rounding errors, (J;_1 does not have truly orthogonal columns. In
modified Gram—Schmidt (MGS) we compute the length of the projection of w = ay
onto ¢; and subtract that projection (and the rounding errors) from w. Next we
compute the length of the projection of the computed w onto go and subtract that
projection (and the rounding errors) from w, and so on, but always orthogonalizing
against the computed version of w. Evaluated from right to left:

w = (I - %-1%?71) cee (I - Q2QQT)(I - QIQf)ak-

If the computed Q Q)1 = I + E, then this is very nearly the same w that would
be computed by

w= (I = Qr-1(Qf_1Qr—1)""Qf_1)a
where we replace (Qf ,Q;_1)"' by I — E, and is much “more orthogonal” to Qj_;
than the CGS w.



