
Solving Square Triangular Systems

When you were taught Gaussian Elimination, you were probably taught to stop the
elimination process when you achieved an “upper triangular form”, at which point
you could solve the system by backward substitution. By upper triangular we mean
that all matrix entries below the main diagonal are 0’s.

Let’s teach a computer to solve the upper triangular system of linear equations
Uy = b, where U ∈ Rn×n. It is called backward substitution because the last
equation has the form unnyn = bn, and can be solved as

yn = bn/unn.

Now since we know yn, the penultimate equation un−1,n−1yn−1 + un−1,nyn = bn−1 can be
solved as

yn−1 = (bn−1 − un−1,nyn)/un−1,n−1.

And so we count backward, from n down to 1, finding one solution coefficient at
each equation. In pseudocode:

for j = n : -1 : 1 do the following:

find y(j)

end for j

So let’s see how to implement “find y(j)”. The jth equation is

ujj yj + uj,j+1 yj+1 + . . . + ujn yn = bj,

and since at this point we know yj+1, . . . , yn, we can solve this for yj:

yj = (bj −
n∑

i=j+1

ujiyi) / ujj.

The pseudocode now might be

for j = n : -1 : 1 do the following:

y(j) = ( b(j) - u(j,j+1:n) * y(j+1:n) ) / u(j,j)

end for j

That’s it! It is that simple: y(j) = (scalar - dot product ) / scalar

Of course this only works when the diagonal of U has no zero elements; but that is
precisely when U is nonsingular. Therefore (in exact arithmetic, at least), this
method always returns the solution when a unique solution exists.

What about finite precision arithmetic? It does remarkably well, in fact if ȳ is the
computed solution, then there exists a matrix E such that

(U + E)ȳ = b, where |E| ≤ nµ|U |+ O(µ2)


