
The residual vector for Ax = b

Suppose A ∈ Rn×n is nonsingular, so that x = A−1b is the unique solution to Ax = b
and x solves Ax = b if and only if the residual vector, r = b− Ax, satisfies r = 0.
Let x̄ be a computed approximation to x, and define

r̄ = b− Ax̄.

A measure (in units of ‖b‖) of how much x̄ fails to satisfy Ax = b is simply

ρ(x̄) =
‖r̄‖
‖b‖

. (1)

This number, sometimes called the relative residual, might be the quantity you are
interested in, but often we care about how well x̄ approximates the true solution x.
It is important to note here that r̄ and ρ are quantities that we can compute from
A, b, and x̄, but x is forever unknown. We investigate below rhe relationship
between ρ(x̄) and both the actual error and the backward error.

We only require that the norm(s) being used are consistent, i.e. ‖Ax‖ ≤ ‖A‖‖x‖ for
any x ∈ Rn. We call κ(A) ≡ ‖A‖‖A−1‖ the condition number of A (more
specifically, it is a relative condition number for the problem “given A, find A−1”).

Notice that A−1r̄ = A−1b− A−1Ax̄, so

x− x̄ = A−1r̄.

From this we easily get the (relative) error bound

ε(x̄) ≡ ‖x− x̄‖
‖x‖

=
‖A−1r̄‖
‖x‖

≤ ‖A
−1‖‖r̄‖
‖x‖

≤ ‖A
−1‖‖A‖‖r̄‖
‖b‖

= κ(A)
‖r̄‖
‖b‖

.

From the other side:

1

κ(A)

‖r̄‖
‖b‖

=
‖b− Ax̄‖
‖A‖‖A−1‖‖b‖

≤ ‖A(A−1b− x̄)‖
‖A‖‖x‖

≤ ‖x− x̄)‖
‖x‖

= ε(x̄),

together giving the tidy result

ρ(x̄)

κ(A)
≤ ε(x̄) ≤ κ(A)ρ(x̄). (2)

Finally we discuss the practical idea of backward error: Does x̄ solve a system close
to Ax = b? More specifically, what’s the smallest change we need to make to Ax = b
so that x̄ is a solution? Define the (relative) backward error in x̄ as

β(x̄) ≡ min
δA,δb

{‖δA‖/‖A‖+ ‖δb‖/‖b‖}, subject to (A+ δA)x̄ = b+ δb.

Now notice that x̄ exactly satisfies the linear system Ax = b− r̄ (this is just the
definition of r̄). So taking δA = 0 and δb = −r, we know that β(x̄) ≤ ‖r̄‖/‖b‖ (this
is because (δA, δb) = (0,−r) is a feasible point for the minimization). Therefore,

β(x̄) ≤ ρ(x̄). (3)

Take these numbered equations with you...


