The residual vector for $A x=b$

Suppose $A \in \mathbb{R}^{n \times n}$ is nonsingular, so that $x=A^{-1} b$ is the unique solution to $A x=b$ and x solves $A x=b$ if and only if the residual vector, $r=b-A x$, satisfies $r=0$. Let \bar{x} be a computed approximation to x, and define

$$
\bar{r}=b-A \bar{x} .
$$

A measure (in units of $\|b\|$) of how much \bar{x} fails to satisfy $A x=b$ is simply

$$
\begin{equation*}
\rho(\bar{x})=\frac{\|\bar{r}\|}{\|b\|} \tag{1}
\end{equation*}
$$

This number, sometimes called the relative residual, might be the quantity you are interested in, but often we care about how well \bar{x} approximates the true solution x. It is important to note here that \bar{r} and ρ are quantities that we can compute from A, b, and \bar{x}, but x is forever unknown. We investigate below rhe relationship between $\rho(\bar{x})$ and both the actual error and the backward error.

We only require that the norm(s) being used are consistent, i.e. $\|A x\| \leq\|A\|\|x\|$ for any $x \in \mathbb{R}^{n}$. We call $\kappa(A) \equiv\|A\|\left\|A^{-1}\right\|$ the condition number of A (more specifically, it is a relative condition number for the problem "given A, find A^{-1} ").

Notice that $A^{-1} \bar{r}=A^{-1} b-A^{-1} A \bar{x}$, so

$$
x-\bar{x}=A^{-1} \bar{r}
$$

From this we easily get the (relative) error bound

$$
\epsilon(\bar{x}) \equiv \frac{\|x-\bar{x}\|}{\|x\|}=\frac{\left\|A^{-1} \bar{r}\right\|}{\|x\|} \leq \frac{\left\|A^{-1}\right\|\|\bar{r}\|}{\|x\|} \leq \frac{\left\|A^{-1}\right\|\|A\|\|\bar{r}\|}{\|b\|}=\kappa(A) \frac{\|\bar{r}\|}{\|b\|} .
$$

From the other side:

$$
\frac{1}{\kappa(A)} \frac{\|\bar{r}\|}{\|b\|}=\frac{\|b-A \bar{x}\|}{\|A\|\left\|A^{-1}\right\|\|b\|} \leq \frac{\left\|A\left(A^{-1} b-\bar{x}\right)\right\|}{\|A\|\|x\|} \leq \frac{\| x-\bar{x}) \|}{\|x\|}=\epsilon(\bar{x}),
$$

together giving the tidy result

$$
\begin{equation*}
\frac{\rho(\bar{x})}{\kappa(A)} \leq \epsilon(\bar{x}) \leq \kappa(A) \rho(\bar{x}) \tag{2}
\end{equation*}
$$

Finally we discuss the practical idea of backward error: Does \bar{x} solve a system close to $A x=b$? More specifically, what's the smallest change we need to make to $A x=b$ so that \bar{x} is a solution? Define the (relative) backward error in \bar{x} as

$$
\beta(\bar{x}) \equiv \min _{\delta A, \delta b}\{\|\delta A\| /\|A\|+\|\delta b\| /\|b\|\}, \quad \text { subject to }(A+\delta A) \bar{x}=b+\delta b .
$$

Now notice that \bar{x} exactly satisfies the linear system $A x=b-\bar{r}$ (this is just the definition of \bar{r}). So taking $\delta A=0$ and $\delta b=-r$, we know that $\beta(\bar{x}) \leq\|\bar{r}\| /\|b\|$ (this is because $(\delta A, \delta b)=(0,-r)$ is a feasible point for the minimization). Therefore,

$$
\begin{equation*}
\beta(\bar{x}) \leq \rho(\bar{x}) \tag{3}
\end{equation*}
$$

Take these numbered equations with you...

