Abstract Eigenstuff

Square matrices are coordinate representations of automorphisms. Automorphisms are simply linear transformations from a vector space V into itself. Given a basis $\mathscr{B}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ for V, any $v \in V$ can be written uniquely as a linear combination of the v 's:

$$
v=\sum_{i=1}^{n} c_{i} v_{i}
$$

The coordinate vector of v wrt \mathscr{B} is $[v]_{\mathscr{B}}=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbb{R}^{n}$ (or \mathbb{C}^{n} or such).
Now if $L: V \rightarrow V$ is a linear transformation, we can represent L as a matrix by looking at the coordinate vectors of its action: $[L v]_{\mathscr{B}} \equiv[L]_{\mathscr{B}}[v]_{\mathscr{B}}$. We take this to be the definition of $[L]_{\mathscr{B}}$ and since $\left[v_{k}\right]_{\mathscr{B}}=e_{k}$, we can find $A=[L]_{\mathscr{B}}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ as

$$
a_{k}=A e_{k}=\left[L v_{k}\right]_{\mathscr{B}} .
$$

Why talk about coordinates here? If we had chosen a different basis, say $\mathscr{D}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$, then $B=[L]_{\mathscr{D}}$ would have columns $b_{k}=B e_{k}=\left[L w_{k}\right]_{\mathscr{D}}$. Now A and B are two different matrices representing the same transformation. Coordinates (matrices) are coordinates wrt a basis, but L is L, is L. How do we know L except through A or B ? A and B are clearly related to each other, but how? Is every square matrix a representation of L wrt some basis? Is there a basis for V that displays L in a particularly suggestive way?

These questions suggest we partition the $n \times n$ matrices into equivalence classes given by automorphisms. Two matrices A and B are similar if they are coordinate representations of the same automorphism. However you first met similarity, this is her true face. The standard definition of similarity (matrices A and B are similar if there exists S with $A=S^{-1} B S$) follows from our definition and the basis discussion above. So what do all representations of L have in common? Properties of L that are shared by all matrix representation of L are called similarity invariants.

The fundamental similarity invariants for an automorphism are the subspaces that it doesn't move. Let $U \leq V$. If $L u \in U$ for every $u \in U$, then U is an invariant subspace for L. Some invariant subspaces have large dimension (e.g. V itself is an invariant subspace for every L), and some are small (e.g. 0 is an invariant subspace for every L). The smallest interesting (nontrivial) invariant subspaces have dimension 1, and for most operators, all invariant subspaces (including V itself) can be built from these.

If U is an invariant subspace of L of dimension 1 , then every $u \in U$ is of the form αu_{0}, where α is a scalar and u_{0} is any nonzero vector in U. Then saying $L u \in U$ is the same as saying $L\left(\alpha u_{0}\right)=\beta u_{0}$. But L is linear, so we can pull out the scalars and let $\lambda=\beta / \alpha$, giving

$$
L u=\lambda u .
$$

