
Abstract Eigenstuff

Square matrices are coordinate representations of automorphisms. Automorphisms
are simply linear transformations from a vector space V into itself. Given a basis
B = {v1, v2, . . . , vn} for V , any v ∈ V can be written uniquely as a linear
combination of the v’s:

v =
n∑

i=1

civi.

The coordinate vector of v wrt B is [v]B = (c1, c2, . . . , cn) ∈ Rn (or Cn or such).

Now if L : V → V is a linear transformation, we can represent L as a matrix by
looking at the coordinate vectors of its action: [Lv]B ≡ [L]B[v]B. We take this to be
the definition of [L]B and since [vk]B = ek, we can find A = [L]B = [a1, a2, . . . , an] as

ak = Aek = [Lvk]B.

Why talk about coordinates here? If we had chosen a different basis, say
D = {w1, w2, . . . , wn}, then B = [L]D would have columns bk = Bek = [Lwk]D . Now
A and B are two different matrices representing the same transformation.
Coordinates (matrices) are coordinates wrt a basis, but L is L, is L. How do we
know L except through A or B? A and B are clearly related to each other, but
how? Is every square matrix a representation of L wrt some basis? Is there a basis
for V that displays L in a particularly suggestive way?

These questions suggest we partition the n×n matrices into equivalence classes
given by automorphisms. Two matrices A and B are similar if they are coordinate
representations of the same automorphism. However you first met similarity, this is
her true face. The standard definition of similarity (matrices A and B are similar if
there exists S with A = S−1BS) follows from our definition and the basis discussion
above. So what do all representations of L have in common? Properties of L that
are shared by all matrix representation of L are called similarity invariants.

The fundamental similarity invariants for an automorphism are the subspaces that
it doesn’t move. Let U ≤ V . If Lu ∈ U for every u ∈ U , then U is an invariant
subspace for L. Some invariant subspaces have large dimension (e.g. V itself is an
invariant subspace for every L), and some are small (e.g. 0 is an invariant subspace
for every L). The smallest interesting (nontrivial) invariant subspaces have
dimension 1, and for most operators, all invariant subspaces (including V itself) can
be built from these.

If U is an invariant subspace of L of dimension 1, then every u ∈ U is of the form
αu0, where α is a scalar and u0 is any nonzero vector in U . Then saying Lu ∈ U is
the same as saying L(αu0) = βu0. But L is linear, so we can pull out the scalars and
let λ = β/α, giving

Lu = λu.


