Name: \qquad

1. Let $A=\left[\begin{array}{rrr}-1 & 2 & 0 \\ -3 & 11 & 0 \\ 0 & 10 & 2\end{array}\right]$.
(a) Compute the $A=L U$ factorization of A (give L and U).
(b) Compute the $P A=L U$ factorization of A (give L, P, and U).
(c) Explain why pivoting is used in Gaussian elimination and give an example of a nonsingular matrix that does not have an $L U$ factorization.
2. On Conditioning and stability
(a) When is a problem illconditioned?
(b) What is a condition number supposed to tell us?
(c) Define (backward) stability.
(d) Using the ideas of stability and conditioning, describe the circumstances for which the result of a computation will be guaranteed to have high accuracy.
(e) Discuss the backward stability results for solving $A x=b$ using Gaussian elimination (i) with no pivoting, and (ii) with partial pivoting.
(25) 3. Let $A \in \mathbb{R}^{n \times n}$ be nonsingular. Briefly outline an appropriate method for solving $A x=b$ in each of the following situations. Include computational costs (in terms of flops). For example, do not give details on how we get L or U, but give the cost of computing them, and how we use them to find x.
(a) Using Gaussian elimination with partial pivoting.
(b) If A is triangular.
(c) If A is symmetric.
(d) If A is symmetric positive definite.
(10) 4. Given the system $A x=b$, and an approximation \hat{x} to x, define the residual $\hat{r}=b-A \hat{x}$. Suppose that $\|\cdot\|$ is submultiplicative. Show that

$$
\frac{\|x-\hat{x}\|}{\|x\|} \leq \kappa(A) \frac{\|\hat{r}\|}{\|b\|}
$$

(10) 5. Compute the Cholesky factorization of $A=\left[\begin{array}{rr}4 & -2 \\ -2 & 10\end{array}\right]$.

