Name:
(24) 1. Define $H \equiv H(u)=I-\frac{2}{u^{t} u} u u^{t}$.
(a) Show that $H(u)=H(\sigma u)$, for all nonzero scalars σ.
(b) If $x \in \mathbb{R}^{m}$ is nonzero, which vector u should we use so that $H x=\beta e_{1}$?
(c) Given $u \in \mathbb{R}^{m}$ and $B \in \mathbb{R}^{m \times n}$, how many flops are required to compute $H B$?
(d) Let $u=(3,4,0)^{t}$ and let $v=(2,3,1)^{t}$. Compute $H v$.
2. Let $A \in \mathbb{R}^{m \times n}, \quad m>n$ be full rank.
(a) Describe the thin $Q R$ factorization of A (not the process, but the resulting output and the properties of Q and R).
(b) Describe the explicit full $Q R$ factorization of A (not the process, but the resulting output and the properties of Q and R).
(c) The Householder $Q R$ implicit-Q factorization gives a factored Q. What does this mean?
3. Let $A \in \mathbb{R}^{m \times n}, \quad m>n$ and let $b \in \mathbb{R}^{m}$. Let the columns of A be linearly independent. Consider the least squares problem

$$
\min _{x}\|A x-b\|_{2} \quad(\mathrm{LS})
$$

(a) Describe the normal equations approach to solving (LS).
(b) Describe the Gram-Schmidt QR approach to solving (LS).
(c) Describe the Householder (implicit-Q) QR approach to solving (LS).
(d) What is the cost (in flops) of each of these methods?
(e) Describe the conditioning of (LS).
4. Let $A=\left[\begin{array}{rr}-3 & 0 \\ 3 & 1 \\ 2 & 1\end{array}\right]$, and let $b=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$.
(a) Form the normal equations for these data (you don't have to solve).
(b) Find u_{1} for the Householder $Q R$ factorization of A.
(c) Find q_{1}, the first column of the MGS $Q R$ factorization of A.
(d) Please describe the difference(s) between the classical Gram-Schmidt and modified Gram-Schmidt algorithms.

