Name: _____

- (24) 1. Define $H \equiv H(u) = I \frac{2}{u^t u} u u^t$.
 - (a) Show that $H(u) = H(\sigma u)$, for all nonzero scalars σ .

(b) If $x \in \mathbb{R}^m$ is nonzero, which vector u should we use so that $Hx = \beta e_1$?

(c) Given $u \in \mathbb{R}^m$ and $B \in \mathbb{R}^{m \times n}$, how many flops are required to compute HB?

(d) Let $u = (3, 4, 0)^t$ and let $v = (2, 3, 1)^t$. Compute Hv.

- (25) 2. Let $A \in \mathbb{R}^{m \times n}$, m > n be full rank.
 - (a) Describe the thin QR factorization of A (not the process, but the resulting output and the properties of Q and R).

(b) Describe the explicit full QR factorization of A (not the process, but the resulting output and the properties of Q and R).

(c) The Householder QR implicit-Q factorization gives a factored Q. What does this mean?

(30)	3.	Let $A \in \mathbb{R}^{m \times n}$, $m > n$ and let $b \in \mathbb{R}^m$. Let the columns of A be linearly
		independent. Consider the least squares problem

$$\min_{x} \|Ax - b\|_2 \tag{LS}.$$

(a) Describe the normal equations approach to solving (LS).

(b) Describe the Gram-Schmidt QR approach to solving (LS).

(c) Describe the Householder (implicit-Q) QR approach to solving (LS).

- (d) What is the cost (in flops) of each of these methods?
- (e) Describe the conditioning of (LS).

- (21) 4. Let $A = \begin{bmatrix} -3 & 0 \\ 3 & 1 \\ 2 & 1 \end{bmatrix}$, and let $b = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.
 - (a) Form the normal equations for these data (you don't have to solve).

(b) Find u_1 for the Householder QR factorization of A.

(c) Find q_1 , the first column of the MGS QR factorization of A.

(d) Please describe the difference(s) between the classical Gram-Schmidt and modified Gram-Schmidt algorithms.