Name: \qquad
(15) 1. Let $A \in \mathbb{R}^{n \times n}$ be full rank (non-singular) and $b \in \mathbb{R}^{n}$. Let \bar{x} be a computed approximate solution to the problem "Solve $A x=b$ ", and define $r=b-A \bar{x}$ (the residual).
(a) What can you say about the accuracy of \bar{x}, if $\frac{\|r\|}{\|b\|}$ is small? (giving an inequality is ok here)
(b) What, if anything, does $\frac{\|r\|}{\|b\|}$ tell us about the backward stability of \bar{x} ?
(c) What, if anything, does $\frac{\|r\|}{\|b\|}$ tell us about the conditioning of "Solve $A x=b$ "?
(10) 2. Let $A \in \mathbb{R}^{m \times n}$ with $m>n$. Describe the singular value decomposition of A, giving as much detail as you can. (not the process, but the properties of the matrices in the factorization).
3. Let $A \in \mathbb{R}^{m \times n}, \quad m>n$ and let $b \in \mathbb{R}^{m}$. Let the columns of A be linearly independent. Consider the least squares problem

$$
\begin{equation*}
\arg \min _{x}\|A x-b\|_{2} \tag{LS}
\end{equation*}
$$

(a) Describe the explicit normal equations approach to solving (LS). Include the cost in flops for each step.
(b) Explain any advantages or disadvantages of the normal equations approach compared to $Q R$ methods like MGS or HQR.
(c) What is the condition number of "solve $A^{T} A x=A^{T} b$ "?
4. Let $A \in \mathbb{R}^{n \times n}$ and $u, x \in \mathbb{R}^{n \times 1}$. Give an efficient algorithm for computing $B=u x^{T} A x u^{t}$ (this can be pseudo-code or simply writing B in a form for which parantheses indicates the algorithm). Approximately how many flops does your method require?
5. Let $A \in \mathbb{R}^{m \times n}, \quad m>n$ be full rank.
(a) Describe the Gram-Schmidt $Q R$ factorization of A (not the process, but the properties of Q and R).
(b) Explain how to solve (LS) using the Gram-Schmidt $Q R$ factorization of A.
(c) Describe the Householder $Q R$ factorization of A (not the process, but the properties of Q and R).
(d) Explain how to solve (LS) using the Householder $Q R$ factorization of A.

6. Conditioning

(a) Explain what we mean by a well-conditioned problem without referring to condition number.
(b) What is the condition number for "solve $A x=b$ "? Is this a relative or absolute condition number?
(c) What is the condition number for "solve arg min $\|b-A x\|_{2}$? Is this a relative or absolute condition number?
(d) How is $\kappa_{2}(A)$ related to the singular values of A ? (give a formula)
7. If you know that the initial data for a computational problem has relative accuracy of 10^{-16}, and the problem has a relative condition number $\kappa=10^{9}$, then how many correct (decimal) digits could you hope to have in your computed solution?

