Name:
(28) 1. Define $H \equiv H(u)=I-\frac{2}{u^{t} u} u u^{t}$.
(a) Show that $H^{2}=I$.
(b) If $x \in \mathbb{R}^{m}$ is nonzero, which vector u should we use so that $H x=\alpha e_{1}$?
(c) Given $u \in \mathbb{R}^{m}$ and $B \in \mathbb{R}^{m \times n}$, how many flops are required to compute $H B$?
(d) Let $u=(3,0,1)^{t}$ and let $x=(2,3,0)^{t}$. Compute $H x$.
2. Let $A \in \mathbb{R}^{m \times n}, \quad m>n$ be full rank.
(a) Describe the Gram-Schmidt (thin) $Q R$ factorization of A (not the process, but the resulting output and the cost in flops).
(b) Describe the Householder (full) $Q R$ factorization of A (not the process, but the resulting output and the cost in flops).
(c) Compare and contrast the two factorizations.
3. Let $A \in \mathbb{R}^{m \times n}, \quad m>n$ and let $b \in \mathbb{R}^{m}$. Let the columns of A be linearly independent. Consider the least squares problem

$$
\begin{equation*}
\min _{x}\|A x-b\|_{2} \tag{LS}
\end{equation*}
$$

(a) Describe the normal equations approach to solving (LS).
(b) Describe the Gram-Schmidt QR approach to solving (LS).
(c) Describe the Householder QR approach to solving (LS).
(d) Which method is fastest, and what is that flop count?
4. Let $A \in \mathbb{R}^{n \times n}$ be nonsingular and let $b \in \mathbb{R}^{n}$. For any $x \in \mathbb{R}^{n}$, define the residual $r=b-A x$. (Don't make this hard: A is nonsingular and the question is about how (LS) meets $A x=b$).
(a) What is the minimum possible value for $\|r\|_{2}$ in this case?
(b) What value of x gives this minimum value?
(c) Should the normal equations be used to compute x here? Why or why not?
(d) What method would you use in this case? Why? (There are lots of correct answers here, you will be graded mostly on the 'Why?' part).

