Name:
(5) 1. Define swamping in floating point arithmetic.
(5) 2. Define digit cancellation in floating point arithmetic.
(4) 3. Describe the machine epsilon in terms of the distance between neighboring floats.
(5) 4. State the Fundamental Axiom of Floating Point Arithmetic.
(9) 5. Let $a=0.0933446$ and $b=23.26601$. Using 4 decimal digit rounding arithmetic, compute the following:
(a) $\bar{a}=\mathrm{fl}(a)$
(b) $\bar{b}=\mathrm{fl}(b)$
(c) What is the relative error in \bar{a} as an approximation to a.
(15)
6. Gauss transforms: let $A \in \mathbb{R}^{n \times n}$ and $m_{k} \in \mathbb{R}^{n}$ have 0 's in its first k entries.
(a) How many flops are required to compute $B=\left(I+m_{1} e_{1}^{t}\right) A$?
(b) How many flops are required to compute $B=\left(I+m_{k} e_{k}^{t}\right) A$?
(c) What is the inverse of $I+m_{k} e_{k}^{t}$? Justify your answer.
(15) 7. Describe how we can use the factorization $A=L U$ to solve the square system $A x=b$. Give the flop count for your method.
(27)
8. Let $A=\left[\begin{array}{rrr}2 & 1 & 0 \\ -4 & 1 & 2 \\ 2 & 10 & 10\end{array}\right]$.
(a) Give L and U from the $A=L U$ factorization of A.
(b) What can be said of the multipliers in Gaussian elimination with partial pivoting.
(c) Why is pivoting used in Gaussian elimination?
(8)
9. Solve $A x=b$, where $P A=L U$ and

$$
P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad L=\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right], \quad U=\left[\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right], \quad \text { and } b=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

(7) 10. Count the number of flops required to multiply a $n \times n$ lower triangular matrix and an n-vector.

