Name:				
	Name:			

- (24) 1. On Floating Point Arithmetic
 - (a) Carefully define underflow and overflow.

(b) Carefully state the fundamental axiom of floating point arithmetic (FAFA).

(c) Describe swamping (create a simple example if you like).

- (d) In the following use 4 decimal digit rounding arithmetic.
 - i. If x = 124.364. What is f(x)?
 - ii. If y = 0.00876441. What is f(y)?

(18)	2.	Conditioning and Stability					
		(a) Define a backward stable computation.					
		(b) Define an <i>illconditioned</i> problem.					
		(c) Now use the ideas above to describe under what conditions we can expect a computed solution to have small relative error.					
(11)	3.	Explain (i) why we use pivoting in Gaussian Elimination, and (ii) discuss the backward stability of GEPP.					

(3) 4. Let
$$A = \begin{bmatrix} -9 & -8 & -7 \\ -6 & -5 & -4 \\ -3 & -2 & -1 \\ 0 & 1 & 2 \\ 3 & 4 & 5 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{33} \end{bmatrix}$$
 be a partitioning (blacking) of A where A_{21} is 2×2 and A_{22} is 1×1

(blocking) of A, where A_{11} is 2×2 and A_{33} is 1×1 .

(a) What is A_{22} ?

- 5. Let $A \in \mathbb{R}^{n \times n}$, $u, v \in \mathbb{R}^{n \times 1}$, and I be the identity matrix. (18)
 - (a) Count the number of flops for the following algorithm:
 - 1. Compute $W = uv^t$
 - 2. Compute B = I + W
 - 3. Compute Z = BA
 - (b) Give Z in terms of A, I, u, and v.
 - (c) Give a faster algorithm for computing Z and give its flop count. (Don't go into details, but mimic part (a) above.)

- (9) 6. Let $A \in \mathbb{R}^{3 \times n} = [a_1, a_2, a_3]^t$, let $m_1 = (0, 2, -1)^t$ and let e_k be the k^{th} column of the identity matrix. Let $B = (I + m_1 e_1^t)A$.
 - (a) What is the first row of B?
 - (b) What is the second row of B?
 - (c) What is the third row of B? (only worth 1 point)
- (7) 7. Let $x = (2, -1, 4)^t$.
 - (a) What should *m* be if $(I + me_1^t)x = (2, 0, 0)^t$?
 - (b) What should m be if $(I + me_2^t)x = (0, -1, 0)^t$? (only worth 1 point)

(10) 8. Suppose we are given L and U in the LU-decomposition of A. Describe L and U and show how can we use them to solve Ax = b.