Name: $\qquad$
(5) 1. Assume that $x, y$ and $x+y$ are real numbers in the floating point range. Show that $\mathrm{fl}(x+y)$ is backward stable.
(5) 2. Define digit cancellation in floating point arithmetic.
(9) 3. Let $a=0.00123701$ and $b=1234.01$. Using 3 decimal digit rounding arithmetic, compute the following:
(a) $\bar{a}=\mathrm{fl}(a)$
(b) $\bar{b}=\mathrm{fl}(b)$
(c) $\bar{c}=\mathrm{fl}(\bar{b}+\bar{a})$
4. For a floating point system with machine epsilon $\mu$, what is the maximum relative difference between 2 neighboring positive floats?
(4) 5. State the fundamental axiom of floating point arithmetic.
(20) 6. On Conditioning and Stability
(a) What is a well conditioned problem?
(b) What does a condition number measure?
(c) What is a backward stable computation?
(d) How can we use the ideas of conditioning and stability to evaluate the error in a computation?
7. Let $A=\left[\begin{array}{rrr}2 & 0 & 2 \\ 4 & 3 & 5 \\ 0 & -9 & -2\end{array}\right]$.
8. Give $L$ and $U$ from the $A=L U$ factorization of $A$.
(12) 9. Let $A \in \mathbb{R}^{n \times n}$ and $A=L U$ and $P A=L^{\prime} U^{\prime}$ be the factorizations given by G.E. with no pivoting, and partial pivoting, resp.
(a) Give a formula for $e_{i}^{t} L e_{1}$.
(b) Give a bound for $e_{i}^{t} L^{\prime} e_{1}$.
(c) Explain how a |small| diagonal element, $a_{k k}^{(k-1)}$, adversely effects the Gaussian elimination process if no pivoting is used.
(13) 10. Solve $A x=b$, where $P A=L U$ and

$$
P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad L=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right], \quad U=\left[\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right], \quad \text { and } b=\left[\begin{array}{l}
4 \\
6
\end{array}\right] .
$$

(8) 11. Let $\bar{x}$ be a computed solution to $A x=b$ and $r=b-A \bar{x}$ be the residual. Show that if $\|A x\| \leq\|A\|\|x\|$, then

$$
\frac{\|x-\bar{x}\|}{\|x\|} \leq \kappa(A) \frac{\|r\|}{\|b\|}
$$

(8) 12. If $A$ is $n \times n$ and $u$ and $v$ are $n \times 1$, then how many flops are required to compute:
(a) $\left(u v^{t}\right) A$ ?
(b) $u\left(v^{t} A\right)$ ?

