Name:
(5) 1. Define swamping in floating point arithmetic.
(5) 2. Define digit cancellation in floating point arithmetic.
(9) 3. Let $a=0.0123401$ and $b=1.23601$. Using 3 decimal digit rounding arithmetic, compute the following:
(a) $\mathrm{fl}(a)$
(b) $\mathrm{f}(\mathrm{b})$
(c) $\mathrm{fl}(a+b)$
(3) 4. Define the machine precision μ.
(4) 5. State the fundamental axiom of floating point arithmetic.
6. On Conditioning and Stability
(a) What is a well conditioned problem?
(b) Describe what a relative condition number is.
(c) What is a backward stable computation?
(d) How can we use the ideas of conditioning and stability to evaluate the error in a computation?
7. Let $A=\left[\begin{array}{ccc}2 & 1 & 0 \\ 18 & 12 & 1 \\ 4 & 2 & -1\end{array}\right]$.
(a) Give L and U from the $A=L U$ factorization of A.
(b) Explain how pivoting effects the multipliers and why pivoting is used in Gaussian elimination.
(c) Briefly describe complete pivoting.
(12) 8. Solve $A x=b$, where $P A=L U$ and

$$
P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad L=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right], \quad U=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right], \quad \text { and } b=\left[\begin{array}{l}
3 \\
1
\end{array}\right] .
$$

(4) 9. Define a flop.
(6) 10. Count the number of flops required to multiply a $n \times n$ upper triangular matrix and an n-vector.

