Name: \qquad
(16) 1. Suppose $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times p}$, and $C=A B$.
(a) If $b_{j}=B e_{j}$ is the $j^{\text {th }}$ column of B, then what is $C e_{j}$?
(b) If $\alpha_{i}^{*}=e_{i}^{*} A$ is the $i^{\text {th }}$ row of A, then what is $e_{i}^{*} C$?
(c) Using the α 's and b 's from above, what is $c_{i j}=e_{i}^{*} C e_{j}$?
(d) If $a_{j}=A e_{j}$ is the $j^{\text {th }}$ column of A , and $\beta_{i}^{*}=e_{i}^{*} B$ is the $i^{\text {th }}$ row of B, then give C in terms of the a 's and β 's.
(16) 2. Let $\langle x, y\rangle=x^{*} y$ be the standard inner product on \mathbb{C}^{m} and let $Q \in \mathbb{C}^{m \times m}$ be unitary.
(a) What is the solution, x, to the system of equations $Q x=b$?
(b) If $Q=\left[q_{1}, q_{2}, \ldots, q_{m}\right]$, and $b=\sum_{j=1}^{n} c_{j} q_{j}$, then what is c_{j} ?
(c) What is the solution, X, to the matrix equation $X Q=B$?
(d) What is the solution, X, to the matrix equation $X Q=B$?
(5) 3. Let $\|\cdot\|_{R}$ is a vector norm on \mathbb{C}^{m} and $\|\cdot\|_{D}$ is a vector norm on \mathbb{C}^{n}, write the definition of the norm for a matrix $A \in \mathbb{C}^{m \times n}$ induced by these vector norms.
(9) 4. Let $x=[-1,1,-2]^{*}$.
(a) What is $\|x\|_{1}$?
(b) What is $\|x\|_{2}$?
(c) What is $\|x\|_{\infty}$?
(12)
5. Let $A=\left[\begin{array}{rr}3 & -4 \\ 2 & 0 \\ -5 & 5\end{array}\right]$.
(a) What is $\|A\|_{1}$?
(b) What is $\|A\|_{F}$?
(c) What is $\|A\|_{\infty}$?
(6) 6. Describe the singular value decomposition of a matrix $A \in \mathbb{C}^{m \times n}$. (give the factorization, and properties of the factors).
7. If A is a 4×4 matrix with singular values $\sigma_{1}=2, \sigma_{2}=2, \sigma_{3}=2$, and $\sigma_{4}=0$, then
(a) What is $\|A\|_{2}$?
(b) What is $\|A\|_{F}$?
(c) is A singular or nonsingular? How do you know?
(12) 8. Let S be a subspace of \mathbb{C}^{m}, and the vectors $q_{1}, q_{2}, \ldots, q_{n}$ be an orthonormal basis for S.
(a) Give a formula for the orthonormal projector, P, onto S.
(b) If $b \in \mathbb{C}^{m}$, what vector in S is the closest (in 2-norm) to b ?
(c) If y is the vector above (nearest in S to b), what is $\left.(b-y)^{*} y\right)$?
(d) If $y \in S$, what is $P y$?
9. Let $A=Q R \in \mathbb{C}^{m \times n}$ is a reduced (Gram-Schmidt) QR factorization.
(a) Describe the sizes and properties of Q and R.
(b) Outline a method that uses this $A=Q R$ factorization to compute the solution, x, to the least squares problem

$$
\underset{x}{\operatorname{argmin}}\|b-A x\|_{2} .
$$

(You do not need to describe the details of your Gram-Schmidt algorithm)

