Name: _____

(16) 1. Suppose
$$A \in \mathbb{C}^{m \times n}$$
, $B \in \mathbb{C}^{n \times p}$, and $C = AB$.
(a) If $b_j = Be_j$ is the j^{th} column of B , then what is Ce_j ?

(b) If $\alpha_i^* = e_i^* A$ is the i^{th} row of A, then what is $e_i^* C$?

- (c) Using the α 's and b's from above, what is $c_{ij} = e_i^* C e_j$?
- (d) If $a_j = Ae_j$ is the j^{th} column of A, and $\beta_i^* = e_i^* B$ is the i^{th} row of B, then give C in terms of the a's and β 's.
- (16) 2. Let < x, y >= x*y be the standard inner product on C^m and let Q ∈ C^{m×m} be unitary.
 (a) What is the solution, x, to the system of equations Qx = b?

(b) If $Q = [q_1, q_2, \dots, q_m]$, and $b = \sum_{j=1}^n c_j q_j$, then what is c_j ?

(c) What is the solution, X, to the matrix equation XQ = B?

(d) What is the solution, X, to the matrix equation XQ = B?

- (5) 3. Let $\|\cdot\|_R$ is a vector norm on \mathbb{C}^m and $\|\cdot\|_D$ is a vector norm on \mathbb{C}^n , write the definition of the norm for a matrix $A \in \mathbb{C}^{m \times n}$ induced by these vector norms.
- (9) 4. Let $x = [-1, 1, -2]^*$. (a) What is $||x||_1$?
 - (b) What is $||x||_2$?
 - (c) What is $||x||_{\infty}$?

(12) 5. Let
$$A = \begin{bmatrix} 3 & -4 \\ 2 & 0 \\ -5 & 5 \end{bmatrix}$$
.
(a) What is $||A||_1$?

(b) What is $||A||_F$?

(c) What is $||A||_{\infty}$?

(6) 6. Describe the singular value decomposition of a matrix $A \in \mathbb{C}^{m \times n}$. (give the factorization, and properties of the factors).

- (12) 7. If A is a 4 x 4 matrix with singular values σ₁ = 2, σ₂ = 2, σ₃ = 2, and σ₄ = 0, then
 (a) What is ||A||₂?
 - (b) What is $||A||_F$?
 - (c) is A singular or nonsingular? How do you know?

(12) 8. Let S be a subspace of C^m, and the vectors q₁, q₂, ..., q_n be an orthonormal basis for S.
(a) Give a formula for the orthonormal projector, P, onto S.

(b) If $b \in \mathbb{C}^m$, what vector in S is the closest (in 2-norm) to b?

(c) If y is the vector above (nearest in S to b), what is $(b - y)^* y$?

(d) If $y \in S$, what is Py?

(12) 9. Let $A = QR \in \mathbb{C}^{m \times n}$ is a reduced (Gram-Schmidt) QR factorization.

(a) Describe the sizes and properties of Q and R.

(b) Outline a method that uses this A = QR factorization to compute the solution, x, to the least squares problem

$$\operatorname*{argmin}_{x} \|b - Ax\|_2.$$

(You do not need to describe the details of your Gram-Schmidt algorithm)