Numerical Linear Algebra

Name: _____

(5) 1. What is *digit cancellation* in floating point arithmetic.

(5) 2. What is *underflow* in floating point arithmetic?

(5) 3. State the fundamental axiom of floating point arithmetic. (That one is about the error in $f(x \Box y)$). Don't forget to include the hypotheses).

(5) 4. What is the relationship, if any, between the machine epsilon and the distance between floating point numbers.

- (15) 5. Let a = 0.0923436 and b = 732.2791. Using 4 decimal digit rounding arithmetic, compute the following:
 - (a) $\bar{a} = fl(a)$
 - (b) $\bar{b} = fl(b)$
 - (c) What is the absolute error in \bar{b}
 - (7) 6. Derive an upper bound on the relative error in computing fl(ab), where $a, b, ab \in \mathbb{R}$ do not underflow or overflow, and μ is the machine epsilon.

- (8) 7. Suppose A ∈ ℝ^{m×n}, B ∈ ℝ^{n×p}, and C = AB. Let e_k be the kth column of I.
 (a) What is c_{ij} in terms of A, B and the e_k's?
 - (b) Using A, B and the e_k 's, write C as a sum of rank 1 (outer-product) matrices.

(26) 8. Let
$$A = \begin{bmatrix} 2 & 3 & 5 \\ -2 & -2 & -6 \\ 4 & 6 & 8 \end{bmatrix}$$
.

(a) Give L and U from the A = LU factorization of A.

(b) Pivoting in Gaussian elimination (GEPP) guarantees what fact about the multipliers?

(c) Why do we want to avoid large multipliers?

- (8) 9. If $A \in \mathbb{R}^{n \times n}$ and $u, v \in \mathbb{R}^{n \times 1}$, then how many flops are required to compute:
 - (a) $(uv^t)A$?

(b) $u(v^t A)$?

(6) 10. Let A ∈ ℝ^{n×n} have rows e^t_iA = a^t_i, let m ∈ ℝⁿ and let e_k be the kth column of the identity matrix. Let B = (I + me^t_k)A.
 What is the jth row of B (in terms of the elements of m and the rows of A)?

(10) 11. Suppose we are given L and U in the LU factorization of a nonsingular A ∈ ℝ^{n×n}.
(a) Describe L and U

(b) Show how we use L and U to solve Ax = b.