Name: \qquad
(5) 1. What is digit cancellation in floating point arithmetic.
(5) 2. What is underflow in floating point arithmetic?
(5) 3. State the fundamental axiom of floating point arithmetic. (That one is about the error in $\mathrm{fl}(x$$y)$. Don't forget to include the hypotheses).
(5) 4. What is the relationship, if any, between the machine epsilon and the distance between floating point numbers.
(15) 5. Let $a=0.0923436$ and $b=732.2791$. Using 4 decimal digit rounding arithmetic, compute the following:
(a) $\bar{a}=\mathrm{fl}(a)$
(b) $\bar{b}=\mathrm{fl}(b)$
(c) What is the absolute error in \bar{b}
(7) 6. Derive an upper bound on the relative error in computing $\mathrm{f}(a b)$, where $a, b, a b \in \mathbb{R}$ do not underflow or overflow, and $\boldsymbol{\mu}$ is the machine epsilon.
(8) 7. Suppose $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, and $C=A B$. Let e_{k} be the $k^{t h}$ column of I.
(a) What is $c_{i j}$ in terms of A, B and the e_{k} 's?
(b) Using A, B and the e_{k} 's, write C as a sum of rank 1 (outer-product) matrices.
8. Let $A=\left[\begin{array}{rrr}2 & 3 & 5 \\ -2 & -2 & -6 \\ 4 & 6 & 8\end{array}\right]$.
(a) Give L and U from the $A=L U$ factorization of A.
(b) Pivoting in Gaussian elimination (GEPP) guarantees what fact about the multipliers?
(c) Why do we want to avoid large multipliers?
(8) 9. If $A \in \mathbb{R}^{n \times n}$ and $u, v \in \mathbb{R}^{n \times 1}$, then how many flops are required to compute:
(a) $\left(u v^{t}\right) A$?
(b) $u\left(v^{t} A\right)$?
(6) 10. Let $A \in \mathbb{R}^{n \times n}$ have rows $e_{i}^{t} A=a_{i}^{t}$, let $m \in \mathbb{R}^{n}$ and let e_{k} be the $k^{t h}$ column of the identity matrix. Let $B=\left(I+m e_{k}^{t}\right) A$.
What is the $j^{\text {th }}$ row of B (in terms of the elements of m and the rows of A)?
(10) 11. Suppose we are given L and U in the $L U$ factorization of a nonsingular $A \in \mathbb{R}^{n \times n}$.
(a) Describe L and U
(b) Show how we use L and U to solve $A x=b$.

