Name:

\qquad

Recall that we use the notation: e_{k} is the $k^{t h}$ column of I.
(5) 1. What is swamping in floating point arithmetic?
(5) 2. What is underflow in floating point arithmetic?
(5) 3. State the fundamental axiom of floating point arithmetic. (That one is about the error in $\mathrm{fl}(x \square y)$. Don't forget to include the hypotheses).
(9) 4. Let z be a positive floating point number such that $\mathrm{fl}(z+1)=z$.
(a) What can be said about z ?
(b) What is $\mathrm{fl}(\mathrm{fl}(1+z)-z)$?
(c) What is $\mathrm{fl}(1+\mathrm{fl}(z-z))$?
(12) 5. Let $a=0.00123463$ and $b=732.2179$. Using 4 decimal digit rounding arithmetic, compute the following:
(a) $\bar{a}=\mathrm{fl}(a)$
(b) $\bar{b}=\mathrm{fl}(b)$
(c) The relative error in \bar{a}
(12)
6. Let $A=\left[\begin{array}{rrr}-4 & 3 & 2 \\ 3 & -2 & 3\end{array}\right]$. Compute the following:
(a) $\left\|A e_{2}\right\|_{2}$
(b) $\|A\|_{1}$
(c) $\|A\|_{\infty}$
(d) $\|A\|_{F}$
(10) \quad 7. Suppose $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, and $C=A B$.
(a) What is $c_{i j}$ in terms of A, B and the e_{k} 's?
(b) Using A, B and the e_{k} 's, write C as a sum of rank 1 (outer-product) matrices.
8. Let $A=\left[\begin{array}{rrr}2 & 3 & 5 \\ -2 & -2 & -7 \\ 2 & 3 & 3\end{array}\right]$.
(a) Give L and U from the $A=L U$ factorization of A.
(b) Pivoting in Gaussian elimination (GEPP) guarantees what fact about the multipliers?
(c) Why do we want to avoid large multipliers?
(6) 9. Let $A \in \mathbb{R}^{n \times n}$ have rows $e_{i}^{t} A=a_{i}^{t}$ and let $m \in \mathbb{R}^{n}$. Let $B=\left(I+m e_{k}^{t}\right) A$. What is the $j^{\text {th }}$ row of B (in terms of the elements of m and the rows of A)?
(15) 10. Suppose we are given L and U in the $L U$ factorization of a nonsingular $A \in \mathbb{R}^{n \times n}$.
(a) Carefully Describe the structure of L and U
(b) Explain how we use L and U to solve $A x=b$.
(c) If we had $P A=L U$ with P nonsingular, explain how we use P, L, and U to solve $A x=b$.

