Numerical Linear Algebra

Name: _____

Recall that we use the notation: e_k is the k^{th} column of I.

(5) 1. What is *swamping* in floating point arithmetic?

(5) 2. What is *underflow* in floating point arithmetic?

(5) 3. State the fundamental axiom of floating point arithmetic. (That one is about the error in $f(x \Box y)$). Don't forget to include the hypotheses).

- (9) 4. Let z be a positive floating point number such that fl(z+1) = z.
 - (a) What can be said about z?
 - (b) What is fl(fl(1 + z) z)?
 - (c) What is fl(1 + fl(z z))?

(12) 5. Let a = 0.00123463 and b = 732.2179. Using 4 decimal digit rounding arithmetic, compute the following:

(a)
$$\bar{a} = \mathrm{fl}(a)$$

- (b) $\bar{b} = \mathrm{fl}(b)$
- (c) The relative error in \bar{a}

(12) 6. Let
$$A = \begin{bmatrix} -4 & 3 & 2 \\ 3 & -2 & 3 \end{bmatrix}$$
. Compute the following:
(a) $||Ae_2||_2$

(b) $||A||_1$

(c) $||A||_{\infty}$

(d) $||A||_F$

- (10) 7. Suppose $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, and C = AB. (a) What is c_{ij} in terms of A, B and the e_k 's?
 - (b) Using A, B and the e_k 's, write C as a sum of rank 1 (outer-product) matrices.

(21) 8. Let
$$A = \begin{bmatrix} 2 & 3 & 5 \\ -2 & -2 & -7 \\ 2 & 3 & 3 \end{bmatrix}$$
.

(a) Give L and U from the A = LU factorization of A.

(b) Pivoting in Gaussian elimination (GEPP) guarantees what fact about the multipliers?

(c) Why do we want to avoid large multipliers?

(6) 9. Let $A \in \mathbb{R}^{n \times n}$ have rows $e_i^t A = a_i^t$ and let $m \in \mathbb{R}^n$. Let $B = (I + m e_k^t) A$. What is the j^{th} row of B (in terms of the elements of m and the rows of A)?

(15) 10. Suppose we are given L and U in the LU factorization of a nonsingular A ∈ ℝ^{n×n}.
(a) Carefully Describe the structure of L and U

(b) Explain how we use L and U to solve Ax = b.

(c) If we had PA = LU with P nonsingular, explain how we use P, L, and U to solve Ax = b.