Floating Point Numbers

Most numbers cannot be represented in a computer. Those that are not representable are approximated by a relatively small few that are. We will let the floating point approximation of \(x \) be called the float of \(x \) and write it as \(\text{fl}(x) \). A floating point number represents all of the reals in an interval near it. We can bound the length of this interval, and therefore the error that is made when approximating a number by its float. We assume that (normalized) floating point numbers have the form

\[
\bar{x} = \pm(0.b_1b_2\ldots b_t)_2 \times 2^e, \quad \text{where} \quad e_n \leq e \leq e_p \quad \text{and} \quad b_k \text{ is 0 or 1, but } b_1 = 1.
\]

Think of it as a (base-2) fraction times \(2^e \). Numbers too |large| for this representation are said to over|flow, and numbers too |small| are said to under|flow. The set of real numbers which do not underflow or overflow is called the floating point range (FPR).

Since we have allotted \(t \) bits for the fractional part, the distance between \(\bar{x} \) and its |larger| neighboring float is \(2^{e-t} \). Dividing this by \(\bar{x} \) gives an upper bound on the relative distance between any two floats, the machine epsilon: \(\epsilon_{\text{mach}} = 2^{1-t} \). We define the unit round-off, \(\mu \), to be half of this quantity: For a (binary) floating point system with a \(t \) bit fractional part, the unit round-off is \(\mu = 2^{-t} \) (with base \(\beta \), \(\mu = \frac{1}{2}\beta^{1-t} \)).

The Floating Point Representation Theorem.
Suppose \(x \) is a real number in the floating point range (\(x \) doesn’t underflow or overflow). Then

\[
\text{fl}(x) = x(1 + \epsilon), \quad \text{where} \quad |\epsilon| \leq \mu
\]

This is a statement about relative error, and can equivalently be written as

\[
\frac{|x - \text{fl}(x)|}{|x|} \leq \mu.
\]

Unfortunately, the set of floats is not closed under arithmetic operations. For example, when we add two floats, the result is not necessarily a float, but will instead be rounded to its float. Computers today follow an industry standard called the IEEE 754, which among many other things guarantees the following:

The Fundamental Axiom of Floating Point Arithmetic.
Let \(x \ op y \) be some arithmetic operation. That is, \(op \) is one of +, −, × or ÷. Suppose \(x \) and \(y \) are (normalized) floats and that \(x \ op y \) is in the floating point range. Then

\[
\text{fl}(x \ op y) = (x \ op y)(1 + \epsilon), \quad \text{where} \quad |\epsilon| \leq \mu
\]

The geometry is simple: When doing a single arithmetic operation with floats, we get the float which is closest to the true value (as long as it is in FPR). But be careful: this is a statement about floats; other numbers need to be rounded to floats before we can do any arithmetic!