
The Taylor Polynomial

We like polynomials mostly for their flexibility, simplicity, and smoothness. You know
all about the simplicity: they are as smooth as you please, easy to differentiate and
integrate, the polynomials of degree less than n form a vector space of dimension n, the
product of polynomials is a polynomial, a polynomial of degree n has exactly n roots,
etc., etc. An fundamental example of the flexibility of polynomials is the

Weierstrass Approximation Theorem:
If f is any function continuous over any finite inverval [a, b], then for any ϵ > 0 there is
a polynomial p which satisfies |p(x)− f(x)| < ϵ for all x ∈ [a, b].

If you don’t yet appreciate this statement, draw a picture for this theorem (with an f
that has corners if you’re skeptical). We even have constructive proofs for this theorem
(Bernstein polynomials). But this page is about the Taylor polynomial. The Taylor
polynomial is not about approximating on an interval, but rather focusing locally, at a
specific point. A statement is as follows:

Taylor Polynomial: If f has n+1 continuous derivatives on [a, b], and x0 ∈ [a, b], then
for each x ∈ [a, b], there is a ξ = ξ(x) between x and x0 such that

f(x) = Pn(x) +Rn(x), where

Pn(x) =
n∑

j=0

f (j)(x0)

j!
(x− x0)

j, and Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1.

Pn = Pn(x;n, f, x0) is the Taylor polynomial of degree n for f about x0, and
Rn = Rn(x;n, f, x0) is its remainder term (or truncation error term). Pn is the unique
polynomial of degree n or less that satisfies

P (j)
n (x0) = f (j)(x0), j = 0:n,

i.e., at x0, Pn and its first n derivatives match f and its first n derivatives.

An equivalent way to write Pn is with the parameterization x = x0 + h, giving

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2!
f ′′(x0) + · · ·+ hn

n!
f (n)(x0) +

hn+1

(n+ 1)!
f (n+1)(ξ).

The parameter ξ is an unknown parameter, and if that is troubling, we can write Rn as

Rn =

∫ x

x0

f (n+1)(s)

n!
(s− x0)

n ds.

However we write the error term, we can say that if f is smooth enough on [a, b], there
is a polynomial Pn, of degree ≤ n, such that for all x ∈ [a, b], (with h = x− x0)

f(x) = Pn(x) + O(hn+1).


