
Interpolating Splines

We have seen that polynomial interpolation may not suit all analyses. One successful
generalization is piecewise polynomial approximation. Here, rather than interpolate
n+ 1 points by a polynomial of degree n, we interpolate the n+ 1 points by a piecewise
function of the form

S(x) =



s0(x) , x ∈ [x0, x1)
s1(x) , x ∈ [x1, x2)

...
sn−1(x) , x ∈ [xn−1, xn)
sn(x) , x ∈ [xn, xn]

,

where the sj are polynomials of (usually) small degree. sn can be ignored; including it
simply makes the explaination below more natural.

A piecewise linear function is a connect-the-dots graph, while a piecewise quadratic
function has a parabola between each data point. Now a parabola has 3 degrees of
freedom (3 coefficients: it lives in the vector space of polynomials of degree less than 3,
which has dimension 3), but there are only 2 interpolatory conditions to be met. So, for
each interval there are an infinite number of interpolatory parabolas. What do we do
with this freedom? It turns out we can ask that S be smooth, i.e. S ∈ C1([x0, xn]), and
still have one degree of freedom left over (you will see how it goes for the cubic case
below).

The piecewise cubic function has 4n degrees of freedom (4 coefficients for each of the n
cubic polynomials s0, s1, . . . , sn−1 (sn is not needed)), and we can construct
S ∈ C2([x0, xn]) (continuous curvature). The only places where S might not be smooth
is at interior nodes, so our smoothness conditions will apply there. Let’s see:

1. sj(xj) = yj, j = 0:n (n+1 interpolation conditions on S)

2. sj(xj+1) = sj+1(xj+1), j = 0:n−2 (n−1 continuity conditions on S)

3. s′j(xj+1) = s′j+1(xj+1), j = 0:n−2 (n−1 continuity conditions on S ′)

4. s′′j (xj+1) = s′′j+1(xj+1), j = 0:n−2 (n−1 continuity conditions on S ′′)

This gives us 4n− 2 conditions. Typically two more boundary (endpoint) conditions
are prescribed, giving a uniquely determined cubic spline interpolator S. Some common
boundary conditions are (i) clamped: S ′(x0) = y′0 and S ′(xn) = y′n, (ii) natural:
S ′′(x0) = 0 = S ′′(xn), and (iii) not-a-knot: S ′′′ continuous at x1 and xn−1.

Typically, one represents the individual cubic pieces as

sj(x) = aj + bj(x− xj) + cj(x− xj)
2 + dj(x− xj)

3, j = 0:n−1

The equations above can be decoupled into an n× n tridiagonal linear system of
equations in the unknowns cj. The aj’s are obvious from 1., and once the tridiagonal
system is solved, the bj’s and dj’s are solved in terms of the aj’s, cj’s, xj’s and yj’s.


