On Reals and Floats

The set of normalized IEEE floating point numbers is discrete and finite. It has a largest element we'll call *maxnfloat*, and a smallest (positive) element, *minnfloat*. All of the real numbers in the interval [*minnfloat*, *maxnfloat*], together with their negatives, is called the floating point range (FPR):

$$FPR = \{ x \in \mathbb{R} : minnfloat \le |x| \le maxnfloat \}.$$

Notice that the FPR is the (disjoint) union of two real intervals. If |x| < minnfloat, it is said to *underflow*, while if |x| > maxnfloat, it is said to *overflow*.

Each real number in FPR gets represented by ("rounded to") the floating point number nearest it. Every normalized floating point number (normal float) has the form

$$f = \pm (0.b_1 b_2 \dots b_t)_2 \times 2^e$$
, where

 $(0.b_1b_2...b_t)_2$ is interpreted as a base-2 fraction, $b_1 \neq 0$, and e is an integer satisfying $minexp \leq e \leq maxexp$. The difference between |f| and the next-larger float is 2^{e-t} , and therefore the relative difference between two neighboring floats is bounded above by 2^{1-t} . The maximum relative distance between any $x \in FPR$ and its floating point representative is called the machine epsilon: $\epsilon_{mach} = 2^{1-t}$. The unit round-off is half of this: $\mu = \epsilon_{mach}/2 = 2^{-t}$.

There are also non-normal floats. These are floating point "numbers" which do not fit the scheme above. These include $\pm 0, \pm$ Inf, NaN, and the subnormals (which are evenly spaced in the interval (*-minnfloat*, *minnfloat*)). Most compilers allow the programmer to use subnormals, but it's typically not the default. The common default is to set underflow to ± 0 , and overflow to \pm Inf, although most compilers allow the programmer to set error flags in these cases.

Arithmetic with Inf can make sense: Inf+Inf = Inf, -Inf-Inf= -Inf, PositiveNumber*Inf =Inf, NegativeNumber*Inf=-Inf, ect., but not always: NaN, which stands for "not a number", is used for undefined results, like 0/0, Inf - Inf, Inf/Inf, 0*Inf, etc.

With an 8-byte word (double precision), we are able to represent $2^{64} \approx 1.8 \times 10^{19}$ floats. Of these, 2^{54} are non-normal, and half of these non-normals are subnormals. Thus about 99.9% of the 8-byte floats are normal. Here $maxnfloat \approx 10^{308}$, $minnfloat \approx 10^{-308}$, and $\mu \approx 10^{-16}$.

With a 4-byte word (single precision), we have $2^{32} \approx 4.3 \times 10^9$ floats, about 99.2% of which are normal. Here $maxnfloat \approx 10^{38}$, $minnfloat \approx 10^{-38}$, and $\mu \approx 10^{-7}$.

"Number" x	Classification	fl(x)	Other
$minnfloat \le x \le maxnfloa$	$t \mid Normal$	$\left \pm (0.b_1b_2\dots b_t)_2 \times 2^e \right.$	$ \operatorname{fl}(x) = x(1+\delta), \ \delta \le \mu$
x < minnfloat	Underflow	$ \pm 0$	subnormals
x > maxnfloat	Overflow	$ \pm Inf$	error flags
0/0, 0*Inf, Inf - Inf, etc.	Undefined	NaN	error flags