Quadratic interpolation (Introduction to Lagrange Interpolation)

Recall that if you know two points on a line, then you can find that line with the 2-point formula: given $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$ on a line $p(x)$, then

$$
p(x)=y_{0}+\frac{x-x_{0}}{x_{1}-x_{0}}\left(x-x_{0}\right)=y_{0} \frac{x-x_{1}}{x_{0}-x_{1}}+y_{1} \frac{x-x_{0}}{x_{1}-x_{0}} .
$$

Let's try to do the same with 3 points on a parabola: find a quadratic polynomial that contains the points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$. That is, find a_{0}, a_{1}, a_{2} in

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2} \text { so that } p\left(x_{i}\right)=y_{i}, i=0,1,2 .
$$

This gives the system of equations

$$
\begin{aligned}
a_{0}+a_{1} x_{0}+a_{2} x_{0}^{2} & =y_{0} \\
a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2} & =y_{1} \\
a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2} & =y_{2}
\end{aligned}
$$

with unknowns a_{0}, a_{1}, a_{2} appearing linearly (a 3×3 linear system), which we can write as

$$
V a=y, \text { where }
$$

$$
V=\left[\begin{array}{ccc}
1 & x_{0} & x_{0}^{2} \\
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2}
\end{array}\right], \quad y=\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right], \quad \text { and } a=\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right] .
$$

This system has a unique solution if and only if V is nonsingular (has an inverse), and this is the case $\operatorname{iff} \operatorname{det}(V) \neq 0$. It is not too hard to see that $\operatorname{det}(V)=\left(x_{1}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{0}\right)$, and so (after solving $V a=y$ for the coefficients in the vector $a)$ we will have a unique parabola passing through $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, as long as $x_{i} \neq x_{j}$ for $i \neq j$.

We can find this same polynomial a different way: Define the 3 quadratic polynomials $L_{0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}, \quad L_{1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}, \quad$ and $\quad L_{2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}$.

Notice that $L_{0}\left(x_{0}\right)=1$ and $L_{0}\left(x_{1}\right)=L_{0}\left(x_{2}\right)=0$, and in general

$$
L_{i}\left(x_{j}\right)=1, \text { if } i=j \quad \text { and } \quad L_{i}\left(x_{j}\right)=0, \text { if } i \neq j .
$$

Now define

$$
p(x)=y_{0} L_{0}(x)+y_{1} L_{1}(x)+y_{2} L_{2}(x)
$$

and convince yourself that $p\left(x_{i}\right)=y_{i}, i=0,1,2$. Thus, this parabola also contains the points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$. Since the linear system $V a=y$ had a unique solution, this must be the same parabola as above, found without solving a system of equations.

