
Some Programming Principles

What is good code? It is worth thinking (and talking) about before we even begin
to analyze, so take this as a spoiler alert. I could tell you what good code is, but
you will grow your own aesthetic, and it will change over time. Many desirable
properties of good code are in conflict with other desirable properties. An excellent
piece of code in one context may be a weak link or a silly extravagance in another.
That said, there are some properties generally considered worth attending to. In no
particular order (one should not prioritize such lists), here are 7:

fast, small, general, portable, accurate, clear, robust

ATBE (all things being equal), my code should run fast. If it is part of an antilock
brake system, it must run fast, but a fraction of a second in a 5 minute simulation
goes unnoticed. Silly code notwithstanding, speed is fundamentally a function of
algorithm, language and hardware.

ATBE (but of course they are not), my code should be small (use little memory,
here I mean data storage, not how many lines of code). Memory near the registers is
expensive and fast, and while memory gets cheaper as we move away, it gets much
slower. Furthermore, the code I am writing is almost certainly only one piece of a
process which will compete for memory. The amount of available memory is often
an active contraint in algorithm choice.

ATBEBOCTAN, my code should be general (solve many instances and variations of
the problem). One can always make a general purpose routine go faster by
specializing the type of problem it can solve, but it may be more useful if it can
solve a wider class of problem.

ATBEBOCTAN, my code should be portable (run on many different machines with
little rewriting). Taking advantages of properties of special computers can make a
code run much faster, but reduces its portablilty.

ATBEBOCTAN, my code should be accurate (give the correct answers). We will
have a lot to say about this, but for now let’s just say that while we don’t even hope
to get the exact answer, we sometimes hope to get a best possible approximation.

ATBEBOCTAN, my code should be clear (well documented, and easy to
understand, adapt, and incorporate into other code). We often make small sacrifices
in speed and size for the sake of clarity. We should always make whatever sacrifice is
necessary to communicate to the user how to interpret all input and output
variables. Again, we note that our code is often one piece of some bigger project.

ATBEBOCTAN, my code should be robust (not fail unless it must, and tell me
about the failure if it does). Here failure can be subtle or dramatic, from not
achieving the accuracy that the data warrants, to not giving a solution at all. It is
very bad for a program to crash and possibly ruin many expensive computations,
but it is usually worse for a code to fail and not tell us about it.


