
Polynomial Zeros

The fundamental theorem of algebra tells us that a polynomial p of degree n has
exactly n zeros (if you count right), but it doesn’t tell us how to compute them. We
have formulas (using just arithmetic and nth roots) for the zeros of polynomials of
degree 1, 2, 3 and 4. The quest for formulas for the zeros of higher degree polynomials
birthed a remarkably beautiful theory (now called Galois theory) which among other
things tells us that

there can be no such formula for the roots of polynomials of degree more than 4.

Even if there were such formulas, they probably wouldn’t be a good way to compute
the zeros, but such a theorem means polynomial root finding must, in general, be an
iterative process.

Since this a ubiquitous problem and since polynomials have such structure, special
methods taking advantage of the structure are usually employed. While we certainly
can (and do) use Newton’s, secant or bisection for this problem, let’s look at some
ideas suited to polynomials. Generalizing Newton’s method by approximating p by a
quadratic (or higher) Taylor polynomial is an obvious step. Let x∗ be a root of p, and
xn an approximation to x∗. If we write p∗ = pn + h, then

p(x∗) = p(xn) + hp′(xn) +
h2

2
p′′(xn) + O(h3).

Dropping the O(h3) term and noting that p(x∗) = 0 yields a quadratic equation in h

q(h) =

(
p′′(xn)

2

)
h2 + p′(xn)h+ p(xn) = 0,

and letting be h1 the root of q nearest 0 gives the update xn+1 = xn + h1. This idea
requires 3 function evaluations per iteration and has order of convergence α = 3 per
iteration, and αf =

3√
3 ≈ 1.44 per function evaluation.

As we used secant to rescue Newton’s, we use Müller’s to rescue this Taylor method.
There is exactly one polynomial of degree 2 or less passing through any 3 points in the
plane (with distinct x-coordinates). Let M(x) be the one passing through the points
(xn−2, p(xn−2)), (xn−1, p(xn−1)), and (xn, p(xn)). If we now let m1 be the root of M
nearest xn we have the Müller update xn+1 = m1.

Müller’s method requires only one function evaluation per iteration (p(xn−1) and
p(xn−2) were computed earlier), and has order of convergence α = αf ≈ 1.84.

Once one root, say r1, of p is computed, we can divide p by (x− r1) to get a new
polynomial p2(x) = p(x)/(x− r1) of degree n−1. This process is called deflation. Each
time a new root, say rj of pj is computed, we can compute the polynomial
pj+1(x) = pj(x)/(x− rj). After n− 1 deflation steps, we have all of the roots of p.

We leave you with a question: What about complex roots?
And a confession: deflation, as described here, doesn’t work in finite precision.


