Polynomials

A polynomial $p: \mathbb{F} \rightarrow \mathbb{F}$ is any function from a field \mathbb{F} to \mathbb{F} that can be written as

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

for all $x \in \mathbb{F}$, where n is a finite non-negative integer, and $a_{i} \in \mathbb{F}$. If the idea of a field is at all intimidating, don't worry: just replace \mathbb{F} with the real numbers, \mathbb{R}, or the complex numbers, \mathbb{C} (but there are lots of other fields). The highest power of x that appears is called the degree of $p\left(\operatorname{deg}(p)\right.$). The polynomial above has degree n (if $a_{n}=0$ we wouldn't include it in the expression), we call a polynomial cubic if $n=3$, quadratic if $n=2$, and linear if $n=1$. We say a constant function $p(x) \equiv a_{0}$ has degree 0 , and (if we have to) we say the zero function $p(x) \equiv 0$ has degree $-\infty$. If $a_{n}=1$, we call p a monic polynomial.

Let's let $\mathscr{P}=\mathscr{P}(\mathbb{F})$ be the set of all polynomials (over \mathbb{F}), and \mathscr{P}_{n} be the set of all polynomials with degree no more than n. Let $p, q \in \mathscr{P}_{n}$ and $a \in \mathbb{F}$. Then if we define $a p+q$ by $(a p+q)(x)=a p(x)+q(x)$, we find that \mathscr{P}_{n} and \mathscr{P} are vector spaces. \mathscr{P}_{n} has dimension $n+1$, and \mathscr{P} is infinite dimensional. There are many types of products of polynomials that return polynomials, among them $(p q)(x)=p(x) q(x)$ and $(p \circ q)(x)=p(q(x))$. Ratios of polynomials are not generally polynomials (we call them rational functions), but if $d \neq 0$ is a polynomial with degree less than $\operatorname{deg}(p)$, there exist unique polynomials q and r, with $\operatorname{deg}(r)<\operatorname{deg}(d)$ such that

$$
p(x)=d(x) q(x)+r(x)
$$

Polynomials have some nice properties: The integral of a polynomial is a polynomial and the derivative of a polynomial is a polynomial; in fact if $C^{k}(S)$ is the set of all functions on S with k continuous derivatives, then $\mathscr{P} \subset C^{\infty}(\mathbb{C})$. Smoooth...
If p is monic with degree n, then there are $r_{i} \in \mathbb{C}, i=1,2, \ldots, n$ such that

$$
p(x)=\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right) .
$$

If $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, then $\forall z \in \mathbb{F}$

$$
p(z)=\left(\cdots\left(\left(a_{n} z+a_{n-1}\right) z+a_{n-2}\right) z+\cdots a_{1}\right) z+a_{0} .
$$

We can teach polynomials lots of tricks: If $x_{0} \in \mathbb{F}$, and $y_{i}, i=0: n$ is any sequence of $n+1$ scalars, the Taylor Polynomial is the unique $P \in \mathscr{P}_{n}$ that satisfies

$$
\left.\frac{d^{k}}{d x^{k}}\{P(x)\}\right|_{x=x_{0}}=y_{k}, \quad k=0: n
$$

If $\left(x_{i}, y_{i}\right), i=0: n$ is such that $x_{i} \neq x_{j}$ for $i \neq j$, the Lagrange interpolator is the unique $P \in \mathscr{P}_{n}$ that satisfies

$$
P\left(x_{i}\right)=y_{i}, \quad k=0: n .
$$

If f is any continuous real function on a finite interval $[a, b]$, then for any $\epsilon>0$ there is a $P \in \mathscr{P}$ that satisfies

$$
|f(x)-P(x)|<\epsilon, \quad \forall x \in[a, b] .
$$

