Numerical Differentiation is Easy

Numerical differentiation is the computation of a slope, the instantaneous rate of
change of a function at a point, the quantity

f/(C)Ehmf<C+h)_f(C)

h—0 h

Let’s assume (i) that f is differentiable on an interval (a,b) containing ¢, and (ii) that
we can evaluate f at any point in (a,b). All of the commonly used formulas for
approximating f’(c) (and f”, etc.) can be derived from the Lagrange interpolation
result:

n+1) n
f(z) = Py(x) + Ry(z), where R(z) T 1 P Jl_[xr — xj),
€ (a,b), j=0:n, and £ = ¢{(x) € (a,b).
Differentiating gives
f'(@) = P(z) + Ry (2),
which yields the (n+1)-point finite difference formula
f'(e) = Fy(c).

If f is smooth enough, the error in this approximation is R/, (c), and

NS e -o| + [0 [Ty
s) n+1)! o /

1=0 j#i
The second term above is rather mysterious (¢ differentiable? Yes!), but we can
simplify the analysis by taking x to be one of the nodes:

F0(E)
(n+1)!

f(n+1)
n+1

R,(x) =

flla) = Pla) + [[@i—=) = Pl@)+

The 5 differentiation rules below all use the formula above with ¢ = zy and taking the
nodes to be evenly spaced with spacing h. They are just a few of many, and you can
easily make up your own (e.g., if you do not have uniformly spaced nodes).

f'(xo) = 3 f (o + h) = flwo)] = 5"(&)
= 55 [=3/ (o) + 4 (wo + h) — f(wo + 20)] + 2 f O (E3)
= 55 [f (o + 1) = flao —)] = 2 f®) (&)
= -[~25f (o) + 48f (zo+h) — 36 f (wo+2h) + 16f(x+3h) — 3f(yc0+4h)] + B O (g5)
= [f(wo — 2h) — 8f(x0 — h) + 8f(wo + h) — f(zo + 2h)] + 2 f®) (&)

The 3¢ and 5" of these are called central-difference formulas, the others are
forward-difference if A > 0, and backward-difference if h < 0. Notice that the central
difference formulas have |smaller| weights and smaller error coefficients, and that an
(n+1)-point method has error O(h™).

This may have been easy, but the title is a lie. Please put on (or adjust) your numerical
analysis hat and reconsider assumption (ii), above...

