Notation and Language

If S is a set, then $x \in S$ means x is a member of S (x is 'in' S).

 $\forall x \in S$ means 'for all' or 'for every' $x \in S$.

 $\exists x \in S \text{ means 'there exists' } x \in S.$

 $S \subset T$ means if $x \in S,$ then $x \in T.$ We say S is a subset of T .

 $P \Rightarrow Q$ means 'if statement P is true, then statement Q is true'.

 $Q \Rightarrow P$ is the *converse* of $P \Rightarrow Q$. $P \Rightarrow Q$ and $Q \Rightarrow P$ are generally *not* the same.

 $P \Leftrightarrow Q$ means both $P \Rightarrow Q$ and $Q \Rightarrow P$. $P \Leftrightarrow Q$ and $Q \Leftrightarrow P$ are the same.

P iff Q means $P \Leftrightarrow Q$, and means P and Q are saying exactly the same thing.

 \mathbbm{R} is the set of real numbers.

 \mathbb{C} is the set of complex numbers (the complex plane).

 $x = \operatorname{Re}(u)$ is the real part of the complex number u = x + iy, $i = \sqrt{-1}$.

y = Im(u) is the imaginary part of u = x + iy. y is a real number.

i = 0:n means $i = 0, 1, 2, \dots, n$

[a, b] is the interval (the set) of all $x \in \mathbb{R}$ such that $a \leq x \leq b$.

(a, b) is the interval (the set) of all $x \in \mathbb{R}$ such that a < x < b.

 $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ is the set of all ordered pairs (x, y) with $x, y \in \mathbb{R}$ (the xy-plane).

(x, y) might be a point in \mathbb{R}^2 or an interval in \mathbb{R} ; we will know by context. $[a, b] \times [c, d]$ is the set of all points (x, y) such that $a \leq x \leq b$ and $c \leq y \leq d$. $\mathbb{C}^2 = \mathbb{C} \times \mathbb{C}$ is the set of all ordered pairs (u, v) with $u, v \in \mathbb{C}$.

 $f: D \to R$ is a function f with domain D and range R.

f' is the derivative function of the function f (aka $\frac{df}{dx}$ or Df).

f' is used for real (or complex) functions of a single real (or complex) variable. f'(x) is the derivative of the function f evaluated at the point x (aka $\frac{df}{dx}(x)$ or (Df)(x)). $f^{(k)}$ is the k^{th} derivative of the function f: $\frac{d^k f}{dx^k}$ or $D^k f$ (so $f'' = f^{(2)}, f''' = f^{(3)},...$) $f \in C^0(D)$ means f is a continuous function on the domain D. $f \in C^1(D)$ means f' is a continuous function on the domain D. $f \in C^k(D)$ means $f^{(k)}$ is a continuous function on the domain D. $f \in C^{\infty}(C)$ means f can be differentiated infinitely many times. $C^k(D)$ is the set of all functions having k continuous derivatives on the domain D. Functions $C^k(D)$ are smoother than functions only in $C^{(k-1)}(D)$:

...smoother as we go left-to-right: $C^0(D) \supset C^1(D) \supset C^2(D) \supset \cdots \supset C^{\infty}(D)$.

 $\int f(x) dx$ is the set of real functions whos derivative is f. $\int_a^b f(x) dx$ is the definite integral ('area under curve') of f from a to b. It's a number. $\int_{\Omega} f d\Omega$ is the 'volume' under the 'surface' over Ω . It's a number.

2-D example: $\int_{c}^{d} \int_{a}^{b} f(x,y) dx dy = \int_{\Omega} f d\Omega$, with $\Omega = [a,b] \times [c,d]$ and $d\Omega = dx dy$. p or P is a polynomial (in indeterminate x) if it can be written as $p = \sum_{i=0}^{n} a_{i}x^{i}$. p(x) or P(x) is the value of p when evaluated at the number x. $\deg(p)$ is the *degree* of p (the largest subscript i for which $a_{i} \neq 0$). It is an integer ≥ 0 .

fl(x) is the floating point representation of x (the float nearest x). μ is the unit round-off (half the distance between 1 and the next float). $f = O(h^k)$ means $|f(h)| \leq C|h|^k$, $\forall |h| \leq \delta$, for some positive constants C and δ .