Rejected

Our first look at Monte-Carlo integration showed that when we could sample a
uniform random variable from our domain €2, then

volume(Q) fave = / f(X) dQ
Q

could be used to approximate [, f(X) d€ as
/ F(X)dQ = volume(Q)f + O(1/v/F) = S + O(1/v/x)
0

where f = (32N, f(x;))/N is our computed sample mean.

Typically Q € R? and d is large. If Q is a box, say

Q = [a1,b1] X [ag,bs] X ... X [ag, by, then volume(Q2) = H?:1(bj — a;), and sampling
from 2 is a matter of creating a vector = = (x1, s, ..., ,), where z; is a uniform
(pseudo-)random variable on [a;, b;]. But usually Q isn’t so simple, and it is a
challenge to compute volume(€2) and/or to sample from a uniform distribution on

. One technique that addresses both challenges is rejection sampling.

Consider a domain D C R? for which (i) Q c D, (ii) volume(D) is known (or at
least, easy to compute), and (iii) we can sample from a uniform distribution on D.
If we sample x € D, then either x € §2 or not. The ratio of the number of points in
Q to those in D approaches the ratio volume(£2)/volume(D). Furthermore (and this
is vital): the sampling of those = €  is from a uniform distribution on €.
Therefore, if we sample M times from D and N of those are in €2, then

im0 N/M = volume(£2)/volume(D) and in fact

/Q F(X)dV = [%Volume(D)] [M + O(1/VN).

N

Here is the basic rejection sampling, giving I ~ [, f(X)dQ :
s=0; j=0; M-=0;

while j < N,

sample x from uniform distribution on D
if x is in Omega then

i=i+t
s =s + f(x)
end_if
M=M+1
end_while

I = s*volume(D)/M

It is important that € fit “snugly” in D: The smaller D — 2, the fewer samples are
rejected. Imagine sampling air in a classroom and rejecting points not in you, versus
sampling from a box around your desk and rejecting points not in you.

Often the biggest computation in the loop is to decide if x € €2 or not, and this
question must be answered for each x € D.



