
Monte Carlo Integration

(When you don’t know what’s going on, there is always statistics...)

The average value of a function f over the interval [a, b], fave, is defined by

(b− a)fave =

∫ b

a

f(x)dx (width * height = area).

If f is a fcn of 2 variables the average value of f over Ω is defined by

area(Ω)fave =

∫
Ω

f(x, y) dA (area * height = volume).

For higher dimensions, we have

volume(Ω)fave =

∫
Ω

f(X) dΩ (d-volume * height = (d+1)-volume),

in each of these, “height” is fave, and we interpret “volume” in the general sense (and
this may not be easy to find). If Ω is a k-dimensional “rectangular” region (a “box” in
Rk, or a “k-box”), then volume(Ω) is easy to find: length*width*height*... :

volume(Ω=box) =

∫
Ω

1 dΩ =

∫ bk

ak

· · ·
∫ b2

a2

∫ b1

a1

dx1dx2 · · · dxk =
k∏

j=1

(bj − aj).

So what? Well, we can turn these definitions around to get expressions for the definite
integral, and lacking the true value fave, we can sample from the domain to get an
approximate value for fave and therefore an approximate value for the integral. If we
sample the domain by choosing x randomly, then the technique is called Monte Carlo
(MC) integration, and statistical techniques can tell us our approximate error.

If we sample randomly from a uniform distribution on Ω (xj ∈ Ω is just as likely to be
selected as any other x ∈ Ω), and then compute the sample average

f̂ =
1

N

N∑
i=1

f(xi),

then we have the integral approximation∫
Ω

f dΩ ≈ volume(Ω) f̂ .

How good is our approximation? Since the variance of the sum of N identically
distributed independent r.v.’s is a factor of 1/N smaller than the variance of just one,
and since the central limit theorem says that as N → ∞, we can interpret this variance
as that of a Gaussian distribution, we can therefore consider the error in an MC
integration with N samples to behave (statistically) like O(1/

√
N).

Notice that N is the number of function evaluations, and comparing this error estimate
to other quadrature rules we have developed, we see that MC integration is very
inefficient for low dimensional quadratures. On the other hand, standard grid-type
quadrature (e.g. composite Simpson) of functions of more than about d = 8 variables is
usually more costly than MC techniques. For example, if d = 20 (considered very small
in MC applications), then 20-dim’l composite Simpson with only 5 grid points per axis
would require 520 evaluations of f (a fcn of 20 variables). If we could evaluate f 1000
times per second, then this standard method would take about 3 thousand years.
Taking N = 106, MC might get about 3 digits of accuracy in less than 20 minutes.


